М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pelmenev777
pelmenev777
07.11.2021 15:31 •  Математика

Запиши решение каждой .1)экскурсия по городу началась в 10 часов утра и закончилась в 12 часов 30 минут дня.сколько времени продолжилась экскурсия? 2)спектакль начался в 13 часов и продолжался 3 часа 15 минут.когда закончился этот спектакаль? ! зарание : з

👇
Ответ:
malievaanzira05
malievaanzira05
07.11.2021
1) 12,30-10,00=2,30 (два часа и 30 минут)
2) 13+3,15 = 16,15 (В четыре часа 15 минут)
4,5(87 оценок)
Ответ:
kitty67
kitty67
07.11.2021
1). 12часа 30минут -10 часов =2 часа 30 минут . 2). 13 часа + 3 часа 15 минут = в 16 часов 15 минут закончился спектакль.
4,4(77 оценок)
Открыть все ответы
Ответ:

Пошаговое объяснение:

1)сначала вычислим всю площадь фигуры

S=5×4=20

затем мы видим что у того кусочка длина равна 2 см, значит площадь кусочка

S=2×2=4

затем отнимаем всю площадь фигуры от этого кусочка

20-4=16

ответ:площадь фигуры равна 16 см

2)задание похоже на предыдущую, но только здесь не достаёт 2 кусочка, итак вычислим площадь всей фигуры

S=5×5=25

теперь вычислим площадь первого кусочка

S=3×2=6

затем вычислим площадь второго кусочка

S=1×3=3

и отнимаем всю площадь от двух кусочков

S=25-6-3=16

ответ:площадь фигуры равна 16 см

4,8(11 оценок)
Ответ:
bmwm3gtr75
bmwm3gtr75
07.11.2021
1.  F(x)=e^{2x}+x^3-cos x  и f(x)=2e^{2x}+3x^2+sin x, x∈R
Проверка будет состоять в нахождении производной F'(x).

F'(x)=2e^{2x}+3x^2+ sin x = f(x)

Что и требовалось показать.

2. f(x)=3x^2+2x-3 и M (1;-2)
Найдём первообразную, подставим туда координаты точки М и найдём константу.

F(x) = \int\limits { f(x)} \, dx = \int\limits {(3x^2+2x-3)} \, dx= x^3+x^2-3x + C \\ \\ F(1) = 1^3+1^2-3*1 + C = -2 \\ \\ -1 + C = -2 \\ \\ C = -1

Итак, искомая первообразная такая:

F(x) = x^3+x^2-3x -1

3. 1) Дана парабола y=x^2+x-6 и прямая y = 0 (ось Ох).
Найдём точки пересечения параболы с прямой.
y=x^2+x-6 = 0 \\ \\ x_{1,2} = \frac{-1 \pm \sqrt{1^2 -4*1*(-6)} }{2*1} = \frac{-1 \pm 5}{2} \\ \\ x_1 = -3; \:\:\:\:\: x_2 = 2
Итак, парабола пересекает ось абсцисс в двух точках. А т.к. ветви параболы направлены вверх, то вершина параболы находится ниже оси Ох. Вот нам и надо найти площадь фигуры, ограниченной параболой и осью абсцисс между точками х= -3 и х= 2.
S = \int\limits^2_{-3} {(x^2+x-6)} \, dx = ( \frac{x^3}{3} + \frac{x^2}{2} -6x)|^2_{-3} = \\ \\ = \frac{2^3}{3} + \frac{2^2}{2} -6*2 - \frac{(-3)^3}{3} - \frac{(-3)^2}{2} +6*(-3)) = \\ \\ = \frac{8}{3} +2 -12 +9 - \frac{9}{2} -18 = -19 + \frac{16}{6} - \frac{27}{6} = \\ \\ = -19 - \frac{11}{6} = -20 \frac{5}{6}
Площадь получилась отрицательной, т.к. фигура находится ниже оси абсцисс.

3. 2) Дана парабола y=x^2+1 и прямая y= 10.
Найдём точки пересечения параболы с прямой.
y=x^2+1 = 10 \\ \\ x^2 = 9 \\ \\ x = \pm 3
Вершина параболы в точке (0; 1):
x = - \frac{0}{2*1} =0 \\ \\ y = 0^2 + 1 = 1
Это означает, что интегрированием параболы от минус 3 до плюс 3 мы найдём площадь под параболой до оси абсцисс. А нам надо найти площадь между заданными функциями. Поэтому находим площадь прямоугольника, ограниченного координатами по иксу от минус трёх до плюс трёх, а по игреку от 0 до 10. Эта площадь равна [3 - (-3)] * 10 = 60.
А затем вычтем из площади прямоугольника площадь фигуры под параболой. Остаётся найти площадь этой фигуры:
\int\limits^3_{-3} {(x^2+1)} \, dx = ( \frac{x^3}{3} +x)|^3_{-3} = \frac{3^3}{3} +3 -\frac{(-3)^3}{3} -(-3)= \\ \\ = 9 +3+9+3 = 24
Вот теперь можем вычислить искомую площадь 60 - 24 = 36.
4,5(50 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ