4а+90а=а(4+90)=94а
86b+77b=b(86+77)=163b
209m+m=m(209+1)=210m
302n-n=n(302-1)=301n
task/30403630 Решите в целых числах уравнение: x⁶ =y³+217
решение x⁶= y³+217 ⇔(x²)³- y³= 217 ⇔ (x²- y)( (x²)² +x²y +y²) = 217
т.к. (x²)²+x²y+y²=(x²+y/2)²+3y²/4 > 0 ⇒ x² - y > 0 || x² - y = d > 0 ||
* * * т.е. отрицательные делители числа 217 исключаются * * *
Можно установить ограничение и на x² - 7 = d
{ x²- y =d; (x²)²+x²y +y²)=217/d.⇔{y=x²-d; (x²)²+x²(x²-d)+(x²-d)²=217/d.
(x²)² + x²(x² - d)+(x² - d)² =217/d.⇔ (x²)² - d*x²+(1/3)* (d²-217/d ) = 0
Уравнение может иметь решение, если дискриминант
D=d²- (4/3)(d²- 217/d) = 868/3d - d²/3= (868 - d³)/3d ≥ 0 ⇒ 0 < d < 10
* * * 217 = 7*31 =31*7 = 217*1 = 1*217 * * * остается рассматривать два случая d = 7 или d = 1
а) d=x²- y = 7
{ x²- y = 7 ; (x²)² +x²y +y²) = 31.
(x²)²- 7x²+6 = 0 ⇔ [ x² = 6 ; x²= 1. x²= 1 ⇔ x²=± 1 ⇒y =x² - 7 = - 6
(-1 ; - 6) , (1; - 6) * * * x²= 6⇔x =±√6 не целые * * *
б) d=x²- y = 1
{ x²- y =1 ; (x²)² +x²y +y²) =217.⇔
(x²)²- x²- 72 = 0 ⇔ [ x²= - 8 ; x² = 9. x²= 9⇔ x =±3 ⇒ y =x² - 1 =8
(-3 ;8) , (3;8) * * x²= - 8 не имеет (даже) действительных корней * *
ответ: (-3 ;8) , (-1 ; - 6) , (1; - 6) , (3 ;8).
{ y=x²-7 ; (x²)²+x²(x²-7)+(x²-7)² =31.
(x²)² +x²(x²-7)+(x²-7)² =31 ⇔ 3(x²)² -21x²+(49-31) = 0⇔3(x²)²- 21x²+18 = 0 ⇔ (x²)²- 7x²+6 = 0 ⇔ [ x²= 1 ; x²= 6. x² =1 ⇔ x= ±1 ⇒ y =x²-7 =1-7= - 6
1)отрезок,соединяющий точки окружностей верхнего и нижнего оснований цилиндра, равен 12 см и образует с плоскостью основания угол 60 градусов. Прямая, на которой лежит данный отрезок,удалена от оси цилиндра на 4 см. Найдите площадь осевого сечения цилиндра.
2)параллельно оси цилиндра проведено сечение пересекающее основание по хорде, которая видна из центра этого основания под углом a, а из центра другого основания под углом b.высота цилиндра равна H. найдите площадь сечения
3)Два сечения, параллельные оси цилиндра, пересекаются внутри него. Одно из сечений делится прямой пересечения на равные по площади части.Найдите площадь этого сечения,если второе сечение прямой пересечения делится на прямоугольники площадью 2 и 16 см^2
ω∑≈㏑³√∈∈∉
4а+90а=94а 209м+м=210м
86в+77в=163в 302п-п=301п