(2 + m)^2 (2 - m)^2 - раскроем скобки по формуле квадрата двучлена; (a ± b)^2 = a^2 ± 2ab +b^2, где для первой скобки a = 2, b = m, для второй скобки a = 2, b = m;
(4 + 4m + m^2)(4 - 4m + m^2) - выполним умножение многочленов: Чтобы умножить многочлен на многочлен надо каждый член первого многочлена умножить на каждый член второго многочлена;
16 - 16m + 4m^2 + 16m - 16m^2 + 4m^3 + 4m^2 - 4m^3 + m^4 - приведём подобные;
m^4 + (4m^3 - 4m^3) + (4m^2 - 16m^2 + 4m^2) + (-16m + 16m) + 16 = m^4 - 8m^2 + 16.
(2 + m)^2 (2 - m)^2 - применим свойство степени а^n b^n = (ab)^n;
((2 + m)(2 - m))^2 - основание степени свернем по формуле (a - b)(a + b) = a^2 - b^2, где a = 2 + m, b = 2 - m;
(4 - m^2)^2 = 16 - 8m^2 + m^4.
Из исходного равенства видно, что p>q, в противном случае равенство не выполнялось бы. Предположим, что p=q+k, где k - натуральное. Тогда 2q+k=(q+k-q)^3, отсюда 2q+k=k^3 или 2q=k^3-k=k(k^2-1). Тогда q=k(k^2-1)/2. Отсюда сразу видно, что q будет простым только при k=2, поскольку при k=1 получаем 0, а при k>2 будем получать составные числа, а по условию q простое. Итак, при k=2, q=2*(2^2-1)/2=3. Тогда p=q+k=3+2=5. Это единственное решение удовлетворяющее данному равенству.
ответ: p=5, q=3.
260/100=2,6
2500/2,6=961/5