Представим города, как вершины графа, а дороги, как рёбра.
Изначально у нас был полный граф на 30 вершин, следовательно, в нём было (30 * 29 : 2 = 435) рёбер. Минимальный связный граф - дерево. В дереве на 30-ти вершинах будет 29 рёбер, следовательно, убрать можно не более (435 - 29 = 406) рёбер. Пример - уберём все рёбра из полного графа на 29 вершин, тогда уберётся (29 * 28 : 2 = 406) рёбер, а из любой вершины можно будет добраться до другой через 30-ую вершину, которую мы не трогали.
ответ: 406 дорог.
Представим города, как вершины графа, а дороги, как рёбра.
Изначально у нас был полный граф на 30 вершин, следовательно, в нём было (30 * 29 : 2 = 435) рёбер. Минимальный связный граф - дерево. В дереве на 30-ти вершинах будет 29 рёбер, следовательно, убрать можно не более (435 - 29 = 406) рёбер. Пример - уберём все рёбра из полного графа на 29 вершин, тогда уберётся (29 * 28 : 2 = 406) рёбер, а из любой вершины можно будет добраться до другой через 30-ую вершину, которую мы не трогали.
ответ: 406 дорог.
х - у = 2
х + у = 4
2х = 6
х = 6 / 2 = 3.
у = 4 - х = 4 - 3 = 1.
Получены координаты точки пересечения: (3; 1)