На карте нарисована треугольная автостоянка с масштабом 1: 100. a) какой длины автостоянки край, если соответствующий ей длины отрезка на карте 20см. б) какая площадь автостоянки, если на карте ее площадь 300см2
1) Первый явно солгал, потому что перед ним вообще никого нет. Значит, он или лжец, или конформист. Если он конформист, то сосед сзади него (2-ой) сказал правду. Значит, 2-ой не лжец. Но конформист не мог соврать, если его сосед не лжец. Значит, 1-ый лжец. Тогда 2-ой соврал. Значит, 2-ой или лжец, или конформист. 1) Пусть 2-ой лжец. Тогда и 3-ий тоже соврал. Значит, он тоже лжец. И так далее, получаем, что они все лжецы. Но это нам не подходит. 2) Пусть 2-ой конформист и он соврал, тогда 3-ий сказал правду. 2-ой конформист мог соврать, т.к. у него 1-ый сосед - лжец. Значит, 3-ий рыцарь или конформист, который сказал правду. 3) Если 3-ий конформист, то 4-ый сказал правду. Значит, 4-ый рыцарь. Так мы получаем рыцарей на одного меньше, чем могли бы. 4) Если 3-ий рыцарь, то 4-ый соврал. При этом, если 4-ый лжец, то и 5-ый соврал. А если 4-ый конформист, то 5-ый сказал правду и он не лжец. Но тогда 4-ый конформист не мог соврать, т.к. у него нет соседа лжеца. Значит, 4-ый все-таки лжец, тогда 5-ый конформист, а 6 рыцарь. В итоге мы получаем, что рыцари - каждый третий: 3, 6, 9, 12, 15. Всего максимум 5 рыцарей.
2. Мне кажется, достаточно 4 ящиков, в каждом по 25 карточек, идущих через 4. То есть: 1 ящик: 1, 5, 9, 13, 17, 21, ..., 97 2 ящик: 2, 6, 10, 14, 18, 22, ..., 98 3 ящик: 3, 7, 11, 15, 19, 23, ..., 99 4 ящик: 4, 8, 12, 16, 20, 24, ..., 100
Допустим дан равнобедренный треугольник АВС, где АС основание треугольника, а АВ и ВС боковые стороны. Медиану, проведённую из угла А к стороне ВС обозначим АР, а медиану из угла С к стороне АВ обозначим СК. Получили два треугольника АКС и СРА. У этих треугольников стороны АК и СР равны, так как стороны АВ и ВС равны, а медианы делят противолежащие углу стороны пополам.
АВ=ВС АВ=2АК ВС=2РС ⇒ 2АК=2РС ⇒ АК=РС
Сторона АС - общая, а углы ∠КАС и ∠РСА равны как углы при основании равнобедренного треугольника. По первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны) треугольники АКС и СРА равны, а значит и равны стороны АР и СК. Что и требовалось доказать.