Обозначим ВС = а, АВ = с, АС = в. Используем уравнение для нахождения длины медианы: . Неизвестные стороны обозначим: АВ = х, ВС = у. Подставим известные данные в виде системы уравнений: Приведя к общему знаменателю и возведя в квадрат обе части уравнений, получаем: Отсюда получаем: х² = 308, х = √308 = 2√77, у² = 392, у = √392 = 14√2.
Найдя стороны треугольника по теореме Герона находим его площадь: S=√(p(p-a)(p-b)(p-c)). Здесь р - полупериметр, р = 23.674459. S = √7684 = 87.658428.
Треугольники могут быть двух "типов" - со стороной лежащей на одной прямой, и со стороной, лежащей на другой прямой. на одной прямой выбрать 2 точки для стороны треугольника можно способами, на другой способами. если сторона треугольника (две вершины) лежит на первой прямой, то третья вершина может лежать в одной из 5 точек на другой прямой. таких треугольников всего 28*5 = 140. если сторона треугольника (две вершины) лежит на второй прямой, то третья вершина может лежать в одной из 8 точек на первой прямой. таких треугольников всего 10*8 = 80. всего треугольников может быть 140+80 = 220.