Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев рук у человека.
История
Десятичная непозиционная система счисления с единичным кодированием десятичных цифр возникла во второй половине третьего тысячелетия до н. э. в древнем Египте. В другой великой цивилизации - вавилонской - за две тысячи лет до н. э. внутри шестидесятиричных разрядов использовалась позиционная десятичная система счисления с единичным кодированием десятичных цифр. [1]
Позиционная десятичная система счисления используется евреями с XIV в. до н. э. по сей день. Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.
Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось неправильное название — «арабская».
По условию задачи нас устроит, если произойдет одно из двух несовместных событий:
А - стрелок попадает с 1 раза
В - стрелок попадает со 2 выстрела, а первый выстрел мимо цели.
События А и В несовместны. Напомним некоторые определения:
2) Несовместные события - события, которые не наступают в одном и том же испытании.
3) Суммой событий А и В называется событие С = А+В, состоящее в наступлении, по крайней мере, одного из событий А или В.
4) Теорема: Вероятность суммы несовместных событий А и В равна сумме вероятностей этих событий Р(А+В) = Р(А)+Р(В).
Значит, Р(А+В) = Р(А) + Р(В), где Р(А) = 0,6 по условию. Найдем Р(В).
Напомним некоторые определения:
5) Два события А и В называются независимыми, если вероятность появления каждого из них не зависит от того, проявилось другое событие или нет. в противном случае они зависимые.
8) Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании.
9) Два события называются противоположными, если в данном испытании они несовместны и одно из них обязательно происходит: Р(А) + Р(Á) = 1.
Значит, в этой задаче Р(Á) = 1 - Р(А) = 1 - 0,6= 0,4 - вероятность того, что в первый раз стрелок промахнется.
10) Произведением событий Á и С называется событие В=Á*С, состоящее в том, что в результате испытания произошло и событие Á и событие С.
Заметим, что вероятность события С, что стрелок попадет в цель 2-й раз равна 0,6 (так как она не зависит, первый раз стрелок стреляет или второй), то есть Р(С) = 0,6.
Таким образом, получим Р(В) = Р(Á*С) = 0,4*0,6 = 0,24.
2)90-52=38кг- вишни в 1 ящике
3)30+38=68кг - вишни в 3 и 1 ящике вместе
4)90-68=22кг - вишни во 2 ящике