М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
наталия147
наталия147
05.04.2021 21:33 •  Математика

Точка а расположена на прямой между точками в и с. длина отрезка св на 3 см больше длины отрезка ас. найдите длину отрезка ав.

👇
Ответ:
Эм ответ 
3 см это очень просто!
4,4(55 оценок)
Открыть все ответы
Ответ:
qwerty2569
qwerty2569
05.04.2021
Моя мама говорит, что учиться раньше было намного интересней, чем сейчас. Школьники ходили тогда на занятия в специальной форме. Учеников младших классов принимали в октябрята. Потом они становились пионерами. Затем комсомольцами. Пионеры и комсомольцы становились шефами у младших ребят и во всем им Между школами проводились различные игры (например «Зарница») и соревнования. А победители всем классом ездили куда-нибудь отдыхать: в лес, на море, в горы. Во время каникул всем классом выезжали на экскурсии в другие города или посещали музеи родного города. Весной и осенью ходили в туристические походы. Мама говорит, что это было здорово. Они спали в палатках, пели песни, варили в котелке на костре суп с тушенкой, пекли в золе картошку..
4,8(58 оценок)
Ответ:
Hitroymnik
Hitroymnik
05.04.2021

\begin{cases} x_1'=4x_1+8x_2+2e^{3x}\\ x_2'=-3x_1-6x_2+e^{3x}\end{cases}

Дифференцируем первое уравнение:

x_1''=4x_1'+8x_2'+2\cdot3e^{3x}

Подставим выражение для x_2':

x_1''=4x_1'+8(-3x_1-6x_2+e^{3x})+6e^{3x}

x_1''=4x_1'-24x_1-48x_2+8e^{3x}+6e^{3x}

x_1''=4x_1'-24x_1-48x_2+14e^{3x}

Домножим первое уравнение системы на 6 и сложим его с полученным уравнением:

\begin{cases} 6x_1'=24x_1+48x_2+12e^{3x}\\ x_1''=4x_1'-24x_1-48x_2+14e^{3x}\end{cases}

x_1''+6x_1'=4x_1'-24x_1-48x_2+14e^{3x}+24x_1+48x_2+12e^{3x}

x_1''+2x_1'=26e^{3x}

Составим однородное уравнение, соответствующее данному неоднородному:

x_1''+2x_1'=0

Составим характеристическое уравнение:

\lambda^2+2\lambda=0

\lambda(\lambda+2)=0

\lambda=0;\ \lambda=-2

Общее решение однородного уравнения:

X_1=C_1+C_2e^{-2x}

Частно решение неоднородного уравнения ищем в виде:

\overline{x_1}=Ae^{3x}

Найдем первую и вторую производную:

\overline{x_1}'=3Ae^{3x}

\overline{x_1}''=9Ae^{3x}

Подставим в неоднородное уравнение:

9Ae^{3x}+2\cdot3Ae^{3x}=26e^{3x}

9A+6A=26

15A=26

A=\dfrac{26}{15}

Частное решение неоднородного уравнения:

\overline{x_1}=\dfrac{26}{15}e^{3x}

Общее решение неоднородного уравнения:

x_1=X_1+\overline{x_1}

x_1=C_1+C_2e^{-2x}+\dfrac{26}{15}e^{3x}

Найдем первую производную:

x_1'=-2C_2e^{-2x}+\dfrac{26}{15}\cdot3e^{3x}=-2C_2e^{-2x}+\dfrac{26}{5}e^{3x}

Выразим из первого уравнения x_2:

x_2=\dfrac{x_1'-4x_1-2e^{3x}}{8}

x_2=\dfrac{-2C_2e^{-2x}+\dfrac{26}{5}e^{3x}-4\left(C_1+C_2e^{-2x}+\dfrac{26}{15}e^{3x}\right)-2e^{3x}}{8}

x_2=\dfrac{-2C_2e^{-2x}+\dfrac{26}{5}e^{3x}-4C_1-4C_2e^{-2x}-\dfrac{104}{15}e^{3x}-2e^{3x}}{8}

x_2=\dfrac{-4C_1-6C_2e^{-2x}-\dfrac{56}{15}e^{3x}}{8}

x_2=-\dfrac{1}{2}C_1-\dfrac{3}{4}C_2e^{-2x}-\dfrac{7}{15}e^{3x}

Общее решение системы:

\begin{cases} x_1=C_1+C_2e^{-2x}+\dfrac{26}{15}e^{3x}\\ x_2=-\dfrac{1}{2}C_1-\dfrac{3}{4}C_2e^{-2x}-\dfrac{7}{15}e^{3x}\end{cases}

4,7(19 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ