1 и 3 задачи были самыми легкими в 6-м и 5-м классах. Их решили по 5 учеников. Значит в 4-м самой легкой задачей должна быть 2-ая или 4-ая, но другая задача должна набрать больше решений в суме, ее должны решить не менее 6 учеников. Если самая легкая 4-я, то ее должны решить не менее 5 четвероклассника, тогда она будет самой легкой и в 4-м классе — не подходит по условию. Чтобы самой легкой на олимпиаде была вторая, ее должны решить не менее 3-х четвероклассников, а самой легкой в 4-м классе будет 4-я — 4 решивших.
Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой: , где n- число сторон многоугольника. Отсюда их соотношение равно: Отношение площадей кругов равно отношению квадратов их радиусов: По условию задачи оно равно 0,75 или 3/4. Получаем Значение √3/2 соответствует углу 30°. Значит, 180°/n = 30°, отсюда n = 180/30 = 6. Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см. Радиус описанного круга для шестиугольника R = a = 2 см. Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.