1. НЕВЕРНО, т.к. по свойству описанного четырехугольника для этого должны быть равны суммы противоположных сторон, это не всегда будет так. 2. Около любого правильного многоугольника: 1) либо нельзя описать окружность. 2) можно описать не более одной окружности. Утверждение 1 не противоречит второму, т.е. ВЕРНО. 3. ВЕРНО, есть такая теорема. 4.НЕВЕРНО, пересечение серединных перпендикуляров - центр описанной окружности, а вписанной - биссектрис. 5. ВЕРНО. Треугольник со сторонами 3,4 и 5 - прямоугольный (по обратной т. Пифагора) => центр описанной окружности лежит на середине гипотенузы. 6. ВЕРНО, т.к. диагональ делит квадрат на 2 прямоугольных треугольника, далее как в 5. 7. НЕВЕРНО, т.к. свойство вписанного четырехугольника говорит о том, что суммы противоположных углов равны 180, а это не всегда так.
1. НЕВЕРНО, т.к. по свойству описанного четырехугольника для этого должны быть равны суммы противоположных сторон, это не всегда будет так. 2. Около любого правильного многоугольника: 1) либо нельзя описать окружность. 2) можно описать не более одной окружности. Утверждение 1 не противоречит второму, т.е. ВЕРНО. 3. ВЕРНО, есть такая теорема. 4.НЕВЕРНО, пересечение серединных перпендикуляров - центр описанной окружности, а вписанной - биссектрис. 5. ВЕРНО. Треугольник со сторонами 3,4 и 5 - прямоугольный (по обратной т. Пифагора) => центр описанной окружности лежит на середине гипотенузы. 6. ВЕРНО, т.к. диагональ делит квадрат на 2 прямоугольных треугольника, далее как в 5. 7. НЕВЕРНО, т.к. свойство вписанного четырехугольника говорит о том, что суммы противоположных углов равны 180, а это не всегда так.
5/6х-4/3 = 5/6,
5/6х=5/6+4/3,
5/6х=5/6+8/6,
5/6х=13/6,
х = 13/6:5/6,
х=13/6*6/5,
х=13/5,
х=2ц. 3/5