М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dima22022005
Dima22022005
06.02.2021 03:08 •  Математика

Сонько підкидав гральний кубик чотири рази і кожного разу записував число, що випадало. додавши всі ці числа він отримав суму 21. яку найбільшу кількість разів могло випадати число 3?

👇
Ответ:
Shkola17032004
Shkola17032004
06.02.2021
Я думаю треба 21: 3 може і не правильно!
4,5(21 оценок)
Открыть все ответы
Ответ:
XxxJEKxxX
XxxJEKxxX
06.02.2021
ответ: 10 королей.
Решение: Покрасим белые клетки в синий и красный цвет. Назовём клетку очень хорошей, если король, поставленный на неё, закроет 5 белых клеток и ни с одной стороны от него не будет промежутка в 2 или 1 клетку. Таких мест два. Они забирают 10 белых клеток, осталось 22. Больше хороших клеток нет, так что любой следующий поставленный король закроет самолично не более трёх клеток. 22 : 3 = 7(ост.1), следовательно, нужно поставить ещё 8 королей. Пример на картинке (зелёные - короли):
4,5(56 оценок)
Ответ:
Marlboro55
Marlboro55
06.02.2021

Прямая, которая задается уравнением ax + by = c, можно переписать в виде функции y = kx + l, где k = -\dfrac{a}{b}, \ l = \dfrac{c}{b}

Коэффициент k отвечает за наклон прямой, равный тангенсу угла \alpha, образованного данной прямой и положительным направлением оси Ox, то есть k = \text{tg} \, \alpha

Если k 0, то график функции возрастает.

Если k < 0, то график функции убывает.

Если k = 0, то график ни возрастает, ни убывает — имеем прямую y = l, параллельную оси абсцисс.

а) Пусть прямая проходит через две точки: (0; \ 0) и \left(\dfrac{2}{3}; -\dfrac{5}{6} \right)

Тогда, подставляя соответствующие координаты точек в функцию y = kx + l, получим систему двух линейных уравнений:

\displaystyle \left \{ {{0 = 0k + l \ \ } \atop {-\dfrac{5}{6} = \dfrac{2}{3}k + l }} \right.

Тогда k = -\dfrac{5}{4} и l = 0

\text{tg} \, \alpha = -\dfrac{5}{4} \Rightarrow \alpha = -\text{arctg} \, \dfrac{5}{4} — тупой угол наклона

Так как k < 0, то график функции убывает.

б) Пусть прямая проходит через две точки: \left(-\dfrac{1}{4}; \dfrac{1}{9} \right) и \left(\dfrac{1}{3}; \dfrac{1}{9} \right). Тогда

\displaystyle \left \{ {{\dfrac{1}{9} = -\dfrac{1}{4} k + l } \atop {\dfrac{1}{9} = \dfrac{1}{3}k + l \ \ }} \right.

Тогда k = 0 и l = \dfrac{1}{9}

\text{tg} \, \alpha = 0 \Rightarrow \alpha = 0^{\circ}

Так как k = 0, то график функции ни возрастает, ни убывает.

в) Пусть прямая проходит через две точки: \left(2a; \ a \right) и \left(8a; \ 4a \right), где a\neq 0 — параметр. Тогда

\displaystyle \left \{ {{a = 2a k + l \ } \atop {4a = 8ak + l }} \right.

Умножим первое уравнение на 4 и получаем:

\displaystyle \left \{ {{4a = 8ak + 4l} \atop {4a = 8ak + l \ }} \right.

Тогда k = \dfrac{1}{2} и l = 0

\text{tg} \, \alpha = \dfrac{1}{2} \Rightarrow \alpha = \text{arctg} \ \dfrac{1}{2} — острый угол наклона

Так как k 0, то график функции возрастает.

4,6(14 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ