Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
Итак, В числителе разность: Уменьшаемое - все число после запятой, включая период - это 221 И вычитаемое - число после запятой до периода - это 2 Следовательно, в числителе разность: (221-2)
В знаменателе: Две девятки, поскольку в периоде (21) две цифры И один ноль, поскольку после запятой до периода только одна цифра 2 Следовательно, в знаменателе число 990
Теперь записываем дробь (221-2)/990
И считаем: (221-2)= 219/990 = = 73/330
А поскольку в исходном числе 1,2(21) была 1 целая, то она никуда не делась, и вся дробь теперь выглядит так: 1 73/330 или 403/330
Дано число N=10a+b, причем a=3b⇒N=31b. Поменяв местами цифры, получаем число M=10b+a=13b. По условию N=54M⇒31b=54·13b. Поскольку b - это цифра, такое возможно только если b=0⇒a=0⇒N=0; M=0; N=54M. Скорее всего, автор задания не готов считать число 00 двузначным. Тогда ответ такой: такого числа нет.
Но давайте пофантазируем: может быть автор ошибся, может быть он хотел написать, что второе число не в 54 раза меньше первоначального, а на 54 меньше первоначального. Тогда получается уравнение N=M+54; 31b=13b+54; 18b=54; b=3⇒a=9. То есть первоначальное число - это 93.