М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
эльвинчик2
эльвинчик2
22.04.2022 00:47 •  Математика

Решить пример по действиям 227,36: (865,6-20,8*40,5)*8,38+1,12

👇
Ответ:
Veronika234629
Veronika234629
22.04.2022
1) 20,8 х 40,5 =842,4
2) 865,6 - 842,4 = 23,2
3) 227,36 : 23,2 = 9,8
4) 9,8 х 8,38 = 82,124
5) 82,124 + 1,12 = 83, 244
4,5(76 оценок)
Открыть все ответы
Ответ:
BerikLord777
BerikLord777
22.04.2022
Вероятность вынуть из первой урны 3 белых шара: 6С3/8С3 = 6!/(3!•3!) • 3!•5!/8! = 4•5/(7•8) = 5/14.
Вероятность вынуть из второй урны 4 белых шара: 6С4/14С4 = 6!/(4!•2!) • 4!•10!/14! = 3•4•5•6/(11•12•13•14) = 5•6/(11•13•14) = 5•3/(11•13•7) = 15/1001.
Вероятность этого события: 5/14 • 15/1001 = 75/14014

Вероятность вынуть из первой урны 2 белых шара и 1 чёрный: 6С2•2С1/8С3 = 6!/(2!•4!) • 2 • 3!•5!/8! = 5•6•6/(6•7•8) = 5•3/7•4 = 15/28.
Вероятность вынуть из второй урны 4 белых шара: 5С4/14С4 = 5!/(4!•1!) • 4!•10!/14! = 5•24/(11•12•13•14) = 5/(11•13•7) = 5/1001.
Вероятность этого события: 15/28 • 5/1001 = 75/28028.

Вероятность вынуть из первой урны 1 белый шар и 2 чёрных: 6С1•2С2/8С3 = 6 • 1 • 3!•5!/8! = 6•6/(6•7•8) = 3/7•4 = 3/28.
Вероятность вынуть из второй урны 4 белых шара:4С4/14С4 = 1 • 4!•10!/14! = 24/(11•12•13•14) = 1/(11•13•7) = 1/1001.
Вероятность этого события: 3/28 • 1/1001 = 3/28028.

Вероятность вынуть из второй урны 4 белых шара: 75/14014 + 75/28028 + 3/28028 = 228/28028 = 57/7007
4,8(88 оценок)
Ответ:
konovalovilya
konovalovilya
22.04.2022
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3

Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.

Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3
и, следовательно, AH=AO* sin угла AOH=√3/3
4,4(3 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ