Для того, чтобы 1 января было тем же днём недели, что и 31 декабря, нужно, чтобы в году было 7n+1 дней (n - количество полных недель, целое число). В году может быть 365 или 366 дней. 7n+1 = 365 7n = 364 n = 52
7n+1 = 366 7n = 365 n = 52 1/7 - не подходит, т.к. не целое. То есть, дни недели 1 января и 31 декабря будут совпадать только в невисокосные годы. Високосных 100:4-1 = 25-1 = 24 года (вычитаем 1, т.к. в условии сказано, что 2100 год невисокосный). Значит, в XXI столетии лет, в которых 1 января является тем же днём недели, что и 31 декабря, будет 100-24 = 76.
Пусть х - первое число, тогда 2х - второе и (8-х-2х) =(8-3х) -третье число составим функцию суммы кубов первого и второго слагаемого с третьим слагаемым умноженным на 9. у(х) = х³ +(2х)³ + 9(8-3х) у(х) = 9х³-27х +72 найдем производную у'(х) = (9х³-27х +72)' = 27х²-27 у'(x) =0 ⇒ 27x²-27=0 ⇒ 27(x²-1)=0 ⇒x² =0 ⇒ x= 1 и x= -1( не подходит) - + 1 у'(1) - точка минимума
значит при х=1 у(х) - принимает наименьшее значение у(х) = 9*1-27*1 +72 = 54 - наименьшее значение суммы кубов первого и второго слагаемого с третьим слагаемым умноженным на 9
ну или 910-674-236