У плодовых как и у всех растений различают подземную (корневая система) и надземную часть ( у плодовых она состоит из штамб и кроны) границу между корневой системой и надземной частью ( то место где корни переходят в ствол) называют корневой шейкой у растений развивающихся из семян корневая шейка образуется из подсемядольного колена и является типичной корневой шейкой у растений полученных путём вегетативного размножения границей между корнем и стеблем называют корневой шейкой условно
Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
Решить систему двух уравнений с двумя переменными графически. Для этого нужно найти точки (точку) пересечения двух графиков функций, которые у тебя представленны, а для этого их нужно привести (преобразовать немного) и построить:
х+2у=0 (нужно 《перенести》 в другую часть выражения, за знак равенства х: т.е. от обеих частей выражения (левой от знака равенства и правой) отнять х) 5х+у=-18 (нужно 《перенести》 5х...)
2у=-х (после этого нужно сделать, чтоб слева от знака равенства был только у, т.е. обе части равенства нужно делить на 2) у=-5х-18
у=-х/2 у=-5х-18
Т. к. это линейная функция (прямая) (и первая, и вторая), то строить её можно только по двум произвольным точкам (больше и не надо, чтобы построить прямую).
Точки первой: пусть х=2 у=-2/2=1 Так первая точка первой фунции (2;-1) Аналогично можно найти произвольную вторую точку графика первой функции, пусть, например, (-2;1)
Произвольные точки графика второй функции тоже аналагично можно найти, просто подставив любое значение х и подсчитав: (-3;-3), (-4;2)
Строишь по двум точкам график каждой функции и находишь точку пересечения (общую точку) по полученному графику этих двух прямых. По графику точка пересечения: (-4;2). ответ: (-4;2).
Я тебе в программе нарисовал белым цветом график первой функции (у=-х/2) и синим график второй (у=-5х-18) (просто в школе их надо ещё и подписывать). Поставь 《+》 в комментариях, если получил скриншот программы, если не сложно.