7
Пошаговое объяснение:
Каждый раз смотрим только на последние цифры
33^1 оканчиватся 3(3*1=3)
33^2=33^1*33 оканчивается 9(3*3=9)
33^3=33^2*33 оканчивается 7(9*3=27)
33^4=33^3*33 оканчивается 1(7*3=21)
33^5=33^4*33 оканчивается 3(1*3=3)
33^6=33^5=33 оканчивается 9(3*3=9
...
...
Очевидно, что степени будут повторяться каждые 4 умножения(окончаниями 33^1, 33^5, 33^9, 33^13, 33^(13+4n) ... будет цифра 3)
33^(1+4n) оканчивается на 3
33^(2+4n) оканчивается на 9
33^(3+4n) оканчивается на 7
33^(4n) оканчивается на 1
Где n-целое неотрицательные число.
Поделим 2015 на 4 с остатком:2015=503*4(ост. 3)
33^2015=33^(3+4*503) имеет такую же последнюю цифру, как и 33^3 равную 7
(6х+4)/7 + (9-5х)/6 = (х-2)
Приводим обе части уравнения к общему знаменателю 42
(6х + 4) · 6 + (9 - 5х) · 7 = (х - 2) · 6 · 7
36х + 24 + 63 - 35х = 42х - 84
36х - 35х - 42х = -84 - 24 - 63
-41х = -171
х = -171 : (-41)
х = 171/41
х = 4 целых 7/41
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Проверка: (6 · 171/41 + 4)/7 + (9 - 5 · 171/41)/6 = 4 7/41 - 2
(1026/41 + 4)/7 + (9 - 855/41)/6 = 2 7/41
29 1/41 : 7 - 11 35/41 : 6 = 2 7/41
1190/287 - 486/246 = 2 7/41
4 6/41 - 1 40/41 = 2 7/41
3 47/41 - 1 40/41 = 2 7/41
2 7/41 = 2 7/41 - верно
ответ: при х = 4 целых 7/41 выражения будут равны.
наверное просто догадки , хотя логичнее сзади