где a, b, c – стороны треугольника
S – площадь треугольника
Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна: x√2.
А площадь треугольника будет равна 0,5х².
Значит 2 = (2*0.5x²)/(x+x+x√2) = x²/(x(2+√2)) = x/(2+√2).
Сторона х = 4+2√2.
Таким образом, гипотенуза будет равна: с = (4+2√2)*√2 =
= 4+4√2 = 4(1+√2).
Можно выразить так: с ≈ 4(1+1,414214) ≈ 9,656854.
2) Так как центр вписанной окружности лежит на биссектрисе острого угла, то с = 2*r/(tg(45/2).
tg(45/2) можно взять из таблиц или выразить так:
.
Результат тот же: с ≈ 9,656854.
Скорость Бориса v₂ = 1,5v₁.
Таким образом, расстояние между Машей и Борисом
будет сокращаться со скоростью v = v₂ - v₁ = 0,5v₁
И времени на это потребуется t = S/0,5v₁
Тогда: t = 5v₁/0,5v₁ = 10 (мин)
ответ: Борис догонит Машу через 10 мин.