Числа разделяются на классы. Целые положительные числа - N = {1, 2, 3, … } - составляют множество натуральных чисел. Зачастую и 0 считают натуральным числом.
Множество целых чисел Z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: Z = {0, 1, -1, 2, -2, …}.
Каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. Эквивалентным представлением рационального числа является его задание в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. Например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.
Числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами. Таковыми являются, например, все числа вида vp, где p - простое число. Иррациональными являются известные всем числа и e.
Объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. Геометрическим образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.
Плоскость представляет геометрический образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. Каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.
1.задание
1) 48, 051
2) 54290
3) 0,378
4) 0,25
5) 1,15
6) 20
2.задание
50 - (22,95 : 2,7 + 3,4) * 2,8 = 16,68
1) 22,95 : 2,7 = 8,5
2) 8,5 + 3,4 = 11,9
3) 11,9 * 2,8 = 33,32
4) 50 - 33,32 = 16,68
3.задание
0,144:(3,4-х)=2,4
3,4-х=0,144:2,4
3,4-х-=0,06
х=3,4-0,06
х=3,34
4.задание
58,4*4=233,6 км проехал первый поезд
233,6+25,6=259,2 км проехал второй поезд
259,2/4=64,8 км/ч скорость второго поезда
5.задание
Обозначим через х искомую десятичную дробь.
Если в любой десятичной дроби перенести запятую вправо на одну цифру, то это равносильно умножению данной дроби на 10.
Согласно условию задачи, после переноса в данной десятичной дроби запятой на одну цифру вправо, данная дробь увеличилась на 44.46, следовательно, справедливо следующее соотношение:
10*х = х + 44.46.
Решаем полученное уравнение:
10*х - х = 44.46;
9*х = 44.46;
х = 44.46/9;
х = 4.94.
ответ: искомая десятичная дробь 4.94.
4x-3x=350
x=350