ответ: 2*sqrt(5). Пояснение: Выразим косинус угла между прямыми BA1 и BA2, при теоремы косинусов.Обозначим BA1=a , BA2=b , α=угол между BA1 и BA2 ,
тогда cos(α)=(a^2+b^2-64)/(2*a*b). После этого нужно выразить а и b через x. Для этого тоже воспользуемся теоремой косинусов (рассматривая треугольники BHA1 и BHA2 соответственно). Получим a^2=x^2-2*x+4 , b^2= x^2-10*x+100 . Эти значения подставим в выражение для косинуса альфы. Теперь подумаем, когда угол между прямыми максимальный? ответ: когда косинус принимает минимальное значение.
Теперь у нас есть выражение для cos(α) зависящее только от x ,и для получения ответа, нам нужно найти минимум этого выражения, то есть такой х , что выражение cos(α) минимально.
Подробнее - на -
Длина окружности = L= 2*pi*R= 18 см
Отсюда находим R= 18/(2*3.14)= 2.866 см
Используем значение L/2 = pi*R = 9/
Площадь круга S= pi*R^2 = (pi*R)*R =9*2.866 = 25.8 кв.см.
ответ: Площадь круга 25,8 кв.см.