Число делится на 36, если у него есть признаки делимости на 4 и на 9. Число делится на 4, если число, составленное из последних двух цифр, делится на 4. Число делится на 9, если сумма его цифр делится на 9.
31*823* 3+1+8+2+3=17 - сумма цифр без двух звёздочек Последние две цифры 32 или 36 (делятся на 4)
1) Вместо последней звёздочки ставим цифру 2 17 + 2 = 19 - сумма цифр без первой звёздочки 19 + 8 = 27 - сумма цифр числа (делится на 9) Первая (*) - цифра 8; вторая (*) - цифра 2 Проверяем: 31(8)823(2) : 36 = 88562
2) Вместо последней звёздочки ставим цифру 6 17 + 6 = 23 - сумма цифр без первой звёздочки 23 + 4 = 27 - сумма цифр числа (делится на 9) Первая (*) - цифра 4; вторая (*) - цифра 6 Проверяем: 31(4)823(6) : 36 = 87451
Обозначим все числа, начиная с того, что стоит в верхнем кружкке, по часовой стрелке, как и Число, которое стоит в центре обозначим, как
Равенство всех пяти сумм чисел, стоящих в вершинах треугольников, выражается уравнениями:
Заметим, что во всех суммах, помимо прочих (что можно легко понять и просто из рисунка) присутствует одно и то же число
Так что это число может быть совершенно произвольным: простым, натуральным, целым, дробным, иррациональным, да хоть комплексным... Это ничего не изменит, поскольку данное число входит во все суммы в единичном экземпляре.
Вычеркнем из вышеозначенных уравнений проанализированное число и рассмотрим уравнения в упрощённом варианте:
Из первого равенста следует, что:
Из третьего равенста следует, что:
Поскольку: то:
Из второго равенста следует, что:
Таким образом, все «вершинные» числа должны быть равны между собой, а центральное при этом может быть каким угодно.
Значит на рисунке может оказаться одно или два различных числа. Максимум : 2 .