1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (31. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Пошаговое объяснение:
обозначим стороны второго треугольника буквами а и в. тогда, согласно условию, будем иметь:
а*в = 70 (1)
(а+4)*(в-2) = 70 (2)
при попытке выразить величину а через в из (1) и дальнейшей её подстановке в (2) получим квадратное уравнение, которое пятиклассники ещё решать не умеют. поэтому будем действовать методм подбора или методом «проб и ошибок», тем более, что в данном случае это совсем не сложно.
разложим для начала число 70 на простые сомножители. 70 = 2*5*7. значит число 70 есть произведение — поскольку в нашем случае речь идет как раз о произведении – либо 2*35, либо 10*7, либо 14*5.
согласно условию один из сомножителей увеличили на 4, а второй уменьшили на 2. очевидно, что пара 35*2 этому условию не удовлетворяет. а вот две другие — (14*5 и 10*7) – как раз и являются решением . (10 + 4 = 14, 7 – 2 = 5)