М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rudenkovitalik
rudenkovitalik
12.08.2022 02:39 •  Математика

3.вырази в дециметрах,сантиметрах и миллиметрах 516 мм= дм, см, мм 124 мм= дм, см, мм 709 мм= дм, см, мм 355 мм= дм, см, мм

👇
Ответ:
danilchirkov0
danilchirkov0
12.08.2022

Пошаговое объяснение:

В 1 дм - 10 см - 100мм

В 1 см - 10мм

1) 516мм= 5дм 1см 6мм

  500мм=5дм

  16мм=1см 6мм

2) 124 мм= 1дм 2см 4мм

   100мм=1дм

   24мм=2см 4мм

3) 709мм= 7дм 9мм

   700мм=7дм

   9мм=9мм

4) 355мм = 3дм 5см 5мм

    300мм=3дм

    55мм= 5см 5мм

4,6(75 оценок)
Открыть все ответы
Ответ:
Lenokguryhr
Lenokguryhr
12.08.2022

Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.

Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:

P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.

Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:

M(X)=np,D(X)=npq,σ(X)=npq−−−√.

Пошаговое объяснение:

4,6(10 оценок)
Ответ:
ambarik
ambarik
12.08.2022

Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.

Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:

P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.

Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:

M(X)=np,D(X)=npq,σ(X)=npq−−−√.

Пошаговое объяснение:

4,6(19 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ