Периметр прямоугольника равен 36 см. найдите площадь прямоугольника если известно что его стороны относиться к 1: 5 1: 3 1: 2 1: 1. как меняется площадь прямоугольника от первого к последнему случаю
2(1х+5х)=36,12х=36, х=3 значит одна сторона равна 3, другая 15 2(х+3х)=36 8х=36 х=4,5 значит одна сторона 4,5 другая 13,5 2х+4х=36 х=6 стороны 6 и 12 х+х=36 х=18 обе стороны 18
Обозначим число белых гладиолусов за Х, тогда красных, раз их в три раза больше будет 3Х, значит, желтых, то что осталось, т.е. (19-Х-3Х)=(19-4Х). Запишем результат сравнения в виде двойного неравенства: X<(19-4X)<3X. (Из условия) Рассмотрим неравенства. 1. Х<(19-4Х); ⇒(4Х+Х)<19; 5Х<19; Х<19/5; Х<3ц4/5 (1) 2. (19-4Х)<3X; ⇒19<(3Х+4Х); 19<7X ⇒ X>19/7; X>2ц4/7 (2) Запишем, исходя из (1) и (2) двойное неравенство: 3ц4/5>X>2ц4/7. Т.к. количество гладиолусов каждого цвета - это целое число (про сломанные в условии не было сказано!), то ясно,что только число Х=3 может соответствовать количеству белых гладиолусов. Тогда число красных: 3Х=3·3=9 (гладиолусов), а желтых: (19-3-9)=7(гладиолусов) ответ: 3 белых гладиолуса, 9 красных, 7 желтых.Сравнение: 3<7<9.
Обозначим число белых гладиолусов за Х, тогда красных, раз их в три раза больше будет 3Х, значит, желтых, то что осталось, т.е. (19-Х-3Х)=(19-4Х). Запишем результат сравнения в виде двойного неравенства: X<(19-4X)<3X. (Из условия) Рассмотрим неравенства. 1. Х<(19-4Х); ⇒(4Х+Х)<19; 5Х<19; Х<19/5; Х<3ц4/5 (1) 2. (19-4Х)<3X; ⇒19<(3Х+4Х); 19<7X ⇒ X>19/7; X>2ц4/7 (2) Запишем, исходя из (1) и (2) двойное неравенство: 3ц4/5>X>2ц4/7. Т.к. количество гладиолусов каждого цвета - это целое число (про сломанные в условии не было сказано!), то ясно,что только число Х=3 может соответствовать количеству белых гладиолусов. Тогда число красных: 3Х=3·3=9 (гладиолусов), а желтых: (19-3-9)=7(гладиолусов) ответ: 3 белых гладиолуса, 9 красных, 7 желтых.Сравнение: 3<7<9.
2(х+3х)=36 8х=36 х=4,5 значит одна сторона 4,5 другая 13,5
2х+4х=36 х=6 стороны 6 и 12
х+х=36 х=18 обе стороны 18