ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение:
1) к обеим частям неравенства 8 < 13 прибавить число: 5; 4; – 2; – 6;
8+5 < 13+5 ⇔ 13 < 18
8+4 < 13+4 ⇔ 12 < 17
8+(-2) < 13+(-2) ⇔ 6 < 11
8+(-6) < 13+(-6) ⇔ 2 < 7
2) обе части неравенства 18 > 6 умножить на: 4; 5; -1, -0,5; 11
18 > 6 | ·4 ⇔ 18 · 4 > 6 · 4 ⇔ 72 > 24
18 > 6 | ·5 ⇔ 18 · 5 > 6 · 5 ⇔ 90 > 30
18 > 6 | ·(-1) ⇔ 18 · (-1) < 6 · (-1) ⇔ -18 < -6
18 > 6 | ·(-0,5) ⇔ 18 · (-0,5) < 6 · (-0,5) ⇔ -9 < -3
18 > 6 | ·11 ⇔ 18 · 11 > 6 · 11 ⇔ 198 > 66
3) обе части неравенства 24 > 12 умножить на: - 1; 2; 3; 4
24 > 12 | ·(-1) ⇔ 24 · (-1) < 12 · (-1) ⇔ -24 < -12
24 > 12 | ·2 ⇔ 24 · 2 > 12 · 2 ⇔ 48 > 24
24 > 12 | ·3 ⇔ 24 · 3 > 12 · 3 ⇔ 72 > 36
24 > 12 | ·4 ⇔ 24 · 4 > 12 · 4 ⇔ 96 > 48
Пошаговое объяснение: