1. Періодичні функції
При введенні тригонометричних функцій аргумент позначався буквою t, оскільки букви х і у використовувались для позначення координат точки Pt . Те-
пер повернемось до звичних позначень: х — незалежна змінна, у — залежна змінна, тобто у = sin х, у = cos х, y = tg x.
Оскільки числам х, х ± 2π на тригонометричному колі відповідає одна й та сама точка Px , то мають місце рівності:
sin(x ± 2π) = sin x, cos(x ± 2π) = cos x .
Цю властивість функцій у = sin х і у = cos х називають періодичністю. Вона полягає у тому, що значення функції повторюються через рівні проміжки зміни аргументу. Точний зміст поняття періодичності функції міститься у наступному означенні.
Функція у = f(х) називається періодичною, якщо існує таке число T ≠ 0, що область визначення функції
разом з кожною точкою х містить точки х ± Т і при цьому виконується рівність f(х ± Т) = f(x). Число Т називається періодом функції.
Между числами 6 и 10 содержатся числа 7,8,9.
Проверим, является ли их четверть меньшей 5.
7, четверть 7 : 4 = 1,75,
8, четверть 8 : 4 = 2,
9, четверть 9 : 4 = 2,25.
ответ: 7,8,9.