М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
deni9514
deni9514
17.04.2020 22:43 •  Математика

Решите уравнение 7/13×(26/21+x)-28/54: 14/27= -11/117

👇
Ответ:
Ivan700
Ivan700
17.04.2020
7/13 * (26/21 + х) - 28/54 : 14/27 = - 11/117
7/13 * (26/21 + х) - 28/54 * 27/14 = - 11/117
7/13 * (26/21 + х) - 1 = - 11/117
7/13 * (26/21 + х) = - 11/117 + 1 = (117-11)/117 = 106/117
26/21 + х = 106/117 : 7/13 = 106/117 * 13/7 = 106/63
х = 26/21 - 106/63 = (78-106)/63 = -28/63 = -4/9
4,4(82 оценок)
Открыть все ответы
Ответ:
sotskova20041
sotskova20041
17.04.2020

(2 * х + 1)* (х - 1) > 9;

Раскрываем скобки. Для этого каждые значения в первой скобке, умножаем на каждое значение во второй скобке, и складываем их в соответствии с их знаками. Тогда получаем:  

2 * x ^ 2 - 2 * x + 1 * x - 1 > 9;

Перенесем все значения выражения на одну сторону.

2 * x ^ 2 - x - 1 - 9 > 0;

2 * x ^ 2 - x - 10 > 0;

2 * x ^ 2 - x - 10 = 0;

D = b ^ 2 - 4 * a * c = 1 - 4 * 2 * (- 10) = 1 + 80 = 81;

x1 = (1 + 9)/(2 * 2) = 10/4 = 5/2 = 2,5;

x2 = (1 - 9)/(2 * 2) = - 8/4 = - 2;

Отсюда, x < - 2 и x > 2,5.

Пошаговое объяснение:

4,4(94 оценок)
Ответ:
sking09
sking09
17.04.2020

Главная проблема использования одноключевых (симметричных) криптосистем заключается в распределении ключей. Для того, чтобы был возможен обмен информацией между двумя сторонами, ключ должен быть сгенерирован одной из них, а затем в конфиденциальном порядке передан другой. Особую остроту данная проблема приобрела в наши дни, когда криптография стала общедоступной, вследствие чего количество пользователей больших криптосистем может исчисляться сотнями и тысячами.

Начало асимметричным шифрам было положено в работе «Новые направления в современной криптографии» Уитфилда Диффи и Мартина Хеллмана, опубликованной в 1976 году. Находясь под влиянием работы Ральфа Меркле (Ralph Merkle) о рас открытого ключа, они предложили метод получения секретных ключей для симметричного шифрования, используя открытый канал. В 2002 году Хеллман предложил называть данный алгоритм «Диффи - Хеллмана - Меркле», признавая вклад Меркле в изобретение криптографии с открытым ключом.

Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм RSA (названный по имени авторов - Рон Ривест (Ronald Linn Rivest), Ади Шамир (Adi Shamir) и Леонард Адлеман (Leonard Adleman) из Массачусетского Технологического Института (MIT)).

Справедливости ради следует отметить, что в декабре 1997 года была обнародована информация, согласно которой британский математик Клиффорд Кокс (Clifford Cocks), работавший в центре правительственной связи (GCHQ) Великобритании, описал систему, аналогичную RSA, в 1973 году, а несколькими месяцами позже в 1974 году Малькольм Вильямсон изобрел математический алгоритм, аналогичный алгоритму Диффи – Хеллмана - Меркле.

Суть шифрования с открытым ключом заключается в том, что для шифрования данных используется один ключ, а для расшифрования другой (поэтому такие системы часто называют асимметричными).

Основная предпосылка, которая привела к появлению шифрования с открытым ключом, заключалось в том, что отправитель сообщения (тот, кто зашифровывает сообщение), не обязательно должен быть его расшифровывать. Т.е. даже имея исходное сообщение, ключ, с которого оно шифровалось, и зная алгоритм шифрования, он не может расшифровать закрытое сообщение без знания ключа расшифрования.

Первый ключ, которым шифруется исходное сообщение, называется открытым и может быть опубликован для использования всеми пользователями системы. Расшифрование с этого ключа невозможно. Второй ключ, с которого дешифруется сообщение, называется секретным (закрытым) и должен быть известен только законному получателю закрытого сообщения.

Алгоритмы шифрования с открытым ключом используют так называемые необратимые или односторонние функции. Эти функции обладают следующим свойством: при заданном значении аргумента х относительно вычислить значение функции (x), однако, если известно значение функции y = f(x), то нет пути для вычисления значения аргумента x. Например, функция SIN. Зная x, легко найти значение SIN(x) (например, x = , тогда SIN() = 0). Однако, если SIN(x) = 0, однозначно определить х нельзя, т.к. в этом случае х может быть любым числом, определяемым по формуле i * , где i – целое число.

Однако не всякая необратимая функция годится для использования в реальных криптосистемах. В их числе и функция SIN. Следует также отметить, что в самом определении необратимости функции присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства за обозримый интервал времени.

Пошаговое объяснение:

4,7(80 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ