В прямоугольном параллелепипеде все грани - прямоугольники, все рёбра равны и перпендикулярны основаниям.
Формула диагонали квадрата d=a√2 ⇒
Диагональ АС основания равна 4√2
Из прямоугольного треугольника АА1С по т.Пифагора боковое ребро
АА1=√(А1С²-AC²)=√(81-32)=7 (ед. длины)
-------
Вариант решения.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда являются длины трех ребер, исходящих из одной его вершины. Отсюда следует:
D²=a²+b²+c², где а и b- стороны основания, с - боковое ребро.
По условию а=b=4. D=9
81=16+16+c² ⇒
c²=81-32=49
c=7 - длина бокового ребра.
х=-5
2) 2х=-4
х=-2
3) х=-13
4) -3х=-22,5
х=7,5
5) 7х=-28
х=-4
6) 11х=-55
х=-5