Наполненный басейн примем за единицу (целое).
1) 1 : 2 = 1/2 - часть бассейна, наполняемая через одну трубу за 1 час;
2) 1 : 10 = 1/10 - часть бассейна, наполняемая через другую трубу за 1 час;
3) 3 ч 45 мин = 3 45/60 ч = 3 3/4 ч = 15/4 ч
1 : 15/4 = 1 · 4/15 = 4/15 - часть бассейна, которую выкачает насос за 1 час;
4) 1/2 + 1/10 - 4/15 = 15/30 + 3/30 - 8/30 = 10/30 = 1/3 - часть бассейна, наполняемая за 1 час при одновременной работе двух труб и насоса;
5) 1 : 1/3 = 1 · 3/1 = 3 (ч) - время наполнения бассейна.
Відповідь: за 3 години наповниться басейн при одночасній роботі двох труб і насоса.
Пусть на каждом из двух элеваторов было х тонн зерна. Когда с первого элеватора вывезли 140 т зерна, то на элеваторе осталось (х - 140) т зерна. Когда со второго элеватора вывезли в 2,5 раза больше, чем с первого, то на нем осталось (х - 2,5 * 140) т зерна. По условию задачи известно, что на втором элеваторе зерна осталось меньше, чем на первом в (х - 140)/(х - 2,5 * 140) раз или в 2,4 раза. Составим уравнение и решим его.
(х - 140)/(х - 2,5 * 140) = 2,4;
(х - 140)/(х - 350) = 2,4;
х - 140 = 2,4(х - 350);
х - 140 = 2,4х - 840;
х - 2,4х = -840 + 140;
-1,4х = -700;
х = -700 : (-1,4);
х = 500 (т).
ответ. 500 т зерна было на каждом элеваторе первоначально.
Из заданных чисел оно делится только на 2.