Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.
*960*
Пошаговое объяснение:
Все нечетные числа, включая от 101 и до 2019 образуют арифметическую прогрессию.
Используем формулу для нахождения n-го члена арифметической прогрессии:
а<sub>n</sub>=a<sub>1</sub>+(n-1)*d
По условию, а<sub>1</sub>=101; а<sub>n</sub>=2019; d=a<sub>2</sub>-a<sub>1</sub>=2;
Подставляем данные в формулу
2019=101+(n-1)*2
n - это и будет количество непарных чисел между 101 и 2019(включительно)
Ищем n
2019=101+2n-2
2019-101+2=2n
1920=2n
n=1920/2; *n=960*
P.S.: <sub>***</sub> - это запись нижнего регистра. То есть, то, что стоит на месте *** - индекс. Извиняюсь, если это неудобно читать
2)центр окружности
3)точка пересечения диагоналей