ответ:
-21
пошаговое объяснение:
пусть x_0x
0
— абсцисса точки на графике функции y=-12x^2+bx-10,y=−12x
2
+bx−10, через которую проходит касательная к этому графику.
значение производной в точке x_0x
0
равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3.y
′
(x
0
)=−24x
0
+b=3. с другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2.−12x
0
2
+bx
0
−10=3x
0
+2. получаем систему уравнений \begin{cases} -24x_0+b=-12x_0^2+bx_0-10=3x_0+2. \end{cases}{
−24x
0
+b=3,
−12x
0
2
+bx
0
−10=3x
0
+2.
решая эту систему, получим x_0^2=1,x
0
2
=1, значит либо x_0=-1,x
0
=−1, либо x_0=1.x
0
=1. согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1,x
0
=−1, тогда b=3+24x_0=-21.b=3+24x
0
=−21.
ответ
-21
1)18*2=36
2)36:9=4
3)4+70=74
75:15*100-80=420
1)75:15=5
2)5*100=500
3)500-80=420
200-40:2*10=0
1)-40:2=-20
2)-20*10=-200
3)200-200=0
104-32*2:16=100
1)-32*2=-64
2)-64:16=-4
3)104-4=100
300:100*25+200=275
1)300:100=3
2)3*25=75
3)75+200=275
415+500:10-400=20
1)500:10=5
2)415+5=420
3)420-400=20