Школьный участок занимает площадь 600 квадратных метров. ученики пятого класса в первый день вскопали 1/5 часть всего участка. какую площадь вскопали ученики в первый день? ? ! !
А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
D=p^2+4(p-3)(-6p)=p^2-24p^2+72p= -23p^2+72p; для того чтобы корни квадратного уравнения были положительны необходимо и достаточно выполнения соотношений: 1) D>=0; (>= больше или равно); (при D=0 будет один корень); 2) x1*х2=c/a>0; 3) х1+х2=-b/a>0; 1) -23p^2+72p>=0; 2) х1*х2=-6р/-(р-3)>0; 3) х1+х2=-р/-(р-3)>0; 1) -23р(р-72/23)>=0; 2) 6р/(р-3)>0; 3) р/(р-3)>0; первое соотношение выполнено при р принадлежащем [0;72/23]; второе и третье - при р<0 и р>3; обьединяя решение, получаем: р принадлежит (3;72/23]; при р=72/23 будет один положительный корень.
ответ:120 квадратных метров вскопали ученики в 1 день.