Например, 2 * 3 * 5 * 7 + 1 = 211. Число 211 само является простым.
2 * 3 * 5 * 7 * 11 + 1 = 2311. Число 2311 также простое.
[ Т. е. произведение всех подряд идущих простых чисел от первого и до определенного и плюс 1 всегда будет давать простое число? Проверяем:
2 * 3 + 1 = 7,
2 * 3 * 5 + 1 = 31.
Но если числа идут не от первого простого и не подряд, то в результате простое число не всегда получается:
3 * 5 * 7 + 1 = 106 (составное)
2 * 5 * 7 + 1 = 71 (простое)
2 * 3 * 7 + 1 = 43 (простое)
3 * 5 * 7 * 11 + 1 = 1156 (составное)
3 * 11 * 13 + 1 = 430 (составное)
2 * 3 * 11 * 13 + 1 = 859 (простое)
Получается, что число 2 в этой формуле (n = p1 * p2 * … + 1) всегда приводит к простому числу в результате, независимо от того, какие взяты остальные простые числа. Без него всегда получается составное, также независимо от того, как и каком количестве взяты простые.]
Вообще-то, то что число, полученное по формуле n = p1 * p2 * … + 1, где множество p - простые числа, начинающиеся с первого и идущие подряд, также будет простым доказывается. Ведь если n не делится ни на одно из ряда p, то нет других простых чисел до него, кроме него самого
В решении.
Пошаговое объяснение:
Решить уравнения:
1) 12х - 25х² = 0 Неполное квадратное уравнение.
25х(0,48 - х) = 0
25х = 0
х = 0/25
х₁ = 0;
0,48 - х = 0
-х = - 0,48
х = -0,48/-1
х₂ = 0,48.
2) (2х - 5)² + (2х + 5)² = 82
Раскрыть скобки:
4х² - 20х + 25 + 4х² + 20х + 25 = 82
8х² = 82 - 50
8х² = 32 Неполное квадратное уравнение.
х² = 32/8
х² = 4
х = ±√4
х = ± 2.
3) (9х - 4)*(9х + 4) = 10х - 16
Раскрыть скобки:
81х² - 16 = 10х - 16
81х² - 10х = 0 Неполное квадратное уравнение.
81х(х - 10/81) = 0
81х = 0
х = 0/81
х₁ = 0;
х - 10/81 = 0
х₂ = 10/81.