Вдвух банках 5 литров варенья. в первой банке 3л. на сколько литров варенья больше в первой банке чем во второй? составь две , обратные данной, и реши их
Діагоналі ромба ділять ромб на чотири одинакові прямокутні трикутники, тому площу ромба можна знайти вирахувавши площу одного з трикутників і помножити його на чотири, тобто знайшовши площу усіх цих чотирьох трикутників. Розглянемо трикутник AOB Оскільки квадрат висоти прямокутного трикутника, проведеної до гіпотенузи, дорівнює добутку проекцій катетів на гіпотенузу, то Площа трикутника дорівнює половині добутку довжини сторони трикутника на довжини висоти проведеної до цієї сторони
Каждое число имеет две характеристики: абсолютное значение числа, и его знак. Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5. Число -5 имеет знак «-» и абсолютное значение 5. Абсолютные значения чисел 5 и -5 равны 5. Абсолютное значение числа х называется модулем числа и обозначается |x|. Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно. Это же касается любых выражений, которые стоят под знаком модуля. Правило раскрытия модуля выглядит так: |f(x)|= f(x), если f(x) ≥ 0, и |f(x)|= – f(x), если f(x) < 0 Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0. Чтобы решить уравнение, содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля. Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках. Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно. А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно. Рассмотрим простой пример. Решим уравнение: |x-3|=-x2+4x-3 1. Раскроем модуль. |x-3|=x-3, если x-3≥0, т. е. если х≥3 |x-3|=-(x-3)=3-x, если x-3<0, т. е. если х<3 2. Мы получили два числовых промежутка: х≥3 и х<3. Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке: А) При х≥3 |x-3|=x-3, и наше уранение имеет вид: x-3=-x2+4x-3 Внимание! Это уравнение существует только на промежутке х≥3! Раскроем скобки, приведем подобные члены: x2 -3х=0 и решим это уравнение. Это уравнение имеет корни: х1=0, х2=3 Внимание! поскольку уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3. Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид: 3-x=-x2+4x-3 Внимание! Это уравнение существует только на промежутке х<3! Раскроем скобки, приведем подобные члены. Получим уравнение: x2-5х+6=0 х1=2, х2=3 Внимание! поскольку уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2. Итак: из первого промежутка мы берем только корень х=3, из второго – корень х=2. ответ: х=3, х=2