М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
рамазан115
рамазан115
21.01.2022 01:20 •  Математика

Турист км за 3 дня. во второй день он на 10км меньше,чем в первый день,и на 5км больше,чем в третий. сколько км проходил турист каждый день?

👇
Ответ:
julija1245
julija1245
21.01.2022
Х - км проходил в первый день. х-10 - км проходил во второй день. х-10-5 - км проходил в третий день. х+х-10+х-10-5=50. 3х= 50+25. х=75:3. х=25 км в первый день. 25-10=15 км во второй день. 25-10-5= 10 км в третий день. Проверка:25+15+10= 50
4,4(68 оценок)
Открыть все ответы
Ответ:
Зиколя
Зиколя
21.01.2022

На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.

Начнем с систематизации и повторения.

На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь необходимо проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.

Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.

Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.

Линейное уравнение первого порядка в стандартной записи имеет вид:

Что мы видим?

1) В линейное уравнение входит первая производная .

2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».

3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от «икс». В частности, может быть константой.

Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.

Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.

– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:

– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .

4,6(33 оценок)
Ответ:
alex499
alex499
21.01.2022
Ход решения такой: подбирается число, дополняющее часть с "иксами" до полного квадрата, записывают его в уравнение с + и -, затем решают через разность квадратов.
а) x^2-2x=8; x^2-2x+1-1-8=0; x^2-2x+1-9=0;  (x-1)^2-3^2=0;
(x-1+3)(x-1-3)=0; (x+2)(x-4)=0; x1=-2 x2=4.
b) x^2- 4x= 21; x^2-4x+4-4-21=0; x^2-4x+4-25=0;  (x-2)^2-5^2=0;
(x-2+5)(x-2-5)=0 (x+3)(x-7)=0; x1=-3 x2=7;
 c) x^2+ 6x= 16; х^2+6x+9-9-16=0; х^2+6x+9-25=0; (x+3)^2-5^2=0;
(x+3+5)(x+3-5)=0; (x+8)(X-2)=0; x1=-8 x2=2.
d) x^2+ 2x- 3= 0; x^2+ 2x+1-1- 3= 0; x^2+ 2x+1-4= 0;
(x+1)^2-2^2= 0; (x+1+2)(x+1-2)=0; (x+3)(x-1)=0; x1=-3 x2=1.
e) x^2+6x- 7= 0; x^2+6x+9-9-7= 0; (x+3)^2-16= 0; (x+3+4)(x+3-4)=0;
(x+7)(x-1)=0; x1=-7 x2=1.
f) x^2+3x- 10= 0; x^2+3x+2,25-2,25-10= 0; (x-1,5)^2-12,25=0;
(x-1,5+3,5)(x-1,5-3,5)=0; (x+2)(x-5)=0; x1=-2 x2=5.
h) x^2- 20x+ 36= 0; x^2- 20x+100-100+ 36= 0; (x-10)^2-64=0;
(x-10)^2-8^2=0; (x-10+8)(x-10-8)=0; (x-2)(x-18)=0; x1=2 x2=18.
 i) x^2- 3x= 4; x^2-3x+2,25-2,25-4=0; (x-1,5)^2-6,25=0;
(x-1,5)^2-2,5^2=0; (x-1,5+2,5)(x-1,5-2,5)=0; (x+1)(x-4); x1=-1 x2=4.
j) x^2- x=12; x^2-x+0,25-0,25-12=0; (x-0,5)^2-12,25=0;
(x-0,5)^2-3,5^2=0; (x-0,5+3,5)(x-0,5-3,5)=0; (x+3)(x-4)=0; x1=-3 x2=4.
Надо сказать, что не всякое уравнение можно решить таким Это один из многочисленных методов решения.
4,4(98 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ