ответ:ответ:
46 чел каменщиков (но это во всех бригадах, т.к. неизвестно как в бригадах распределяется количество штукатуров, маляров и камещиков, поэтому узнать сколько в бригаде невозможно и в какой из трех надо ответить тоже непонятно. Возможно, описка в окончании не "в бригаде", а "в бригадах")
Пошаговое объяснение:
1)24*3=72 (чел) - в трех бригадах вместе;
2)72*1/4=72/1*1/4=18 (чел) - выполняло штукатурные работы;
3)18*4/9=18/1*4/9=8 (чел) - выполняло малярные работы;
4)72-(18+8)=46 (чел) - каменщиков
Пошаговое объяснение:
Предположим, что все 5 чисел различны, но тогда как минимум 4 из этих сумм различны.
Например, если сложить первое число с 4-мя остальными.
Но мы имеем только 3 суммы.
То есть хотя бы одно число встречается неоднократно.
А значит в указанных суммах должны быть четные суммы ( число складывается с самим собой)
Но среди данных чисел, только число 46 является четным.
А значит среди этих чисел имеется число: 46/2 = 23
Все остальные числа отличные от 23 не могут повторятся.
Если предположить, что 23 повторяется только два раза, то поскольку остальные 3 числа различны, то число 23 дает с этими тремя различными числами еще 3 различные суммы, иначе говоря, должно быть как минимум 4 суммы, то есть мы пришли к противоречию.
Таким образом, число 23 повторяется 3 раза (если бы оно повторялось 4-5 раз, то было бы менее 3-x различных сумм)
Оставшиеся два числа найти легко:
1. 35 - 23 = 12
2. 57 - 23 = 34
Можно заметить, что 12 + 34 = 46, поэтому четвертой лишней суммы не появится.
То есть были написаны числа: 23 23 23 12 34
Ясно, что Кирилл называет число 34.
х^2 + 2*4/3x - 4/3 =0
x^2 + 8/3x - 4/3 =0
Надо найти такие числа, у которых произведение равно -4/3, а сумма -8/3.
Сложно найти эти числа, воспользуясь теоремой Виета .
Решим привычным образом через дискриминант:
3/4x^2 + 2x - 1 =0
a=3/4
b=2
c=-1
D= b^2 - 4ac = 2*2 - 4*(3/4)*(-1) = 4 + 3 = 7 >0, 2 корня
Находим корни:
х1 = (-b+√D) / 2a = (-2 + √7) / (2*3/4) = (-2 + √7) * (2/3)
x2 = (-b-√D) / 2a = (-2 - √7) / (2*3/4) = (-2 - √7) * (2/3)
Таким образом корни уравнения:
(2/3) * (-2 + √7) и (2/3) *(-2 - √7)