М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Pyfytz
Pyfytz
01.04.2020 17:36 •  Математика

1. длина прямоугольного параллелепипеда равна 5 см, ширина – 3 см, высота – 6 см. найдите площадь поверхности параллелепипеда. 2. дуремару для разведения пиявок нужен аквариум, вмещающий не менее 390 л воды. в магазине есть аквариум с измерениями 90 см, 60 см и 75 см. подойдет ли он? (1 л=1 дм3 ) 3. выразите в м3 : а) 13 см3 ; б) 0,5дм3 ; в) 1035мм3 . 4. выполните действия: 42,165 – 22,165 : (0,61 + 3,42). дополнительное . александр македонский был широко известен своими завоевательными . однажды среди трофеев у него оказалось 2000 золотых монет: больших, средних и малых. большие монеты составили 45 % общего числа монет, а средние - числа больших монет. сколько малых монет было среди трофеев? вариант 2 1. длина прямоугольного параллелепипеда равна 8 см, ширина – 4 см, высота – 5 см. найдите площадь поверхности параллелепипеда. 2. кот матроскин надоил от своей коровы 10 л молока. у него есть емкость, имеющая форму прямоугольного параллелепипеда с измерениями 20 см, 15 см и 35 см. поместится ли там надоенное молоко? (1 л=1 дм3 .) 3. выразите в м3 : а) 2 см3 ; б) 0,75дм3 ; в) 234мм3 . 4. выполните действия: 243,68 + 256,32 : (27,9 - 26,3). дополнительное . пират спрятал на острове сокровищ сундук с драгоценными камнями: алмазами, сапфирами и рубинами. всего в нем было 2400 камней. алмазы составили 45 % всех камней, а сапфиры - числа алмазов. сколько рубинов было в сундуке?

👇
Ответ:
131133
131133
01.04.2020
1)5*3=15см Sоснования a*b 2)90 см
4,4(33 оценок)
Открыть все ответы
Ответ:
zhalamine
zhalamine
01.04.2020
А) sinxcosx+√3 cos^2x=0
cosx(sinx+√3cosx)=0
произведение двух сомножителей равно нулю тогда, когда хотя бы один из множителей равен 0, а другой при этом существует
cosx=0
x=Π/2+Πn, n€Z
sinx+√3cosx=0 | : на cosx
tgx+√3=0
tgx=-√3
x=-Π/3+Πk, k€Z
ответ: -Π/3+Πk, k€Z; Π/2+Πn, n€Z
б) cos2x+9sinx+4=0
1-2sin^2x+9sinx+4=0
-2sin^2x+9sinx+5=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+9t+5=0
D=81+40=121
t1=-9-11/-4=5 посторонний корень
t2=-9+11/-4=-1/2
Вернёмся к замене
sinx=-1/2
x1=-5Π/6+2Πn, n€Z
x2=-Π/6+2Πn, n€Z
ответ: -5Π/6+2Πn, -Π/6+2Πn, n€Z
4,7(81 оценок)
Ответ:
весна37
весна37
01.04.2020
Пусть A - сумма, которую взяли в банке. q - разность остатков долга за июль текущего года и июль предыдущего. Смоделируем ситуацию:
Годом будем считать промежуток с начала ИЮНЯ текущего календарного года по конец ИЮЛЯ следующего календарного года. Таким образом, в начале 16-го года его долг составит 0 млн. рублей.
1й год:
июль - A,
январь - A(1+x/100)
2й год:
июль - (A-q), заплатил A(1+x/100) - (A-q) = A(x/100)+q
январь - (A-q)(1+x/100)
3й год:
июль - (A-2q), заплатил (A-q)(1+x/100) - (A-2q) = (A-q)(x/100)+q
январь - (A-2q)(1+x/100)
...
15й год:
июль - (A-14q), заплатил (A-13q)(1+x/100) - (A-14q) = (A-13q)(x/100)+q
январь - (A-14q)(1+x/100)
16й год:
июль - отдал последние гроши из своего бедного кармана, остаток долга - (A-15q) = 0, заплатил (A-14q)(1+x/100) - (A-15q) = (A-14q)(x/100)+q.
Очевидно, что с каждым годом ему платить приходилось все меньше и меньше.На втором году заплатил A(x/100)+q, а на 16-м: (A-14q)(x/100)+q.
Теперь смотрим на условия задачи.
1) A(x/100)+q <=1.9
2) (A-14q)(x/100)+q >= 0.5
3) A = 6
4) (A-15q) = 0, откуда q = A/15.
Объединим все, что есть:
a) q = 6/15=0.4
б) 6(x/100)+0.4 <= 1.9
x/100<=0.25
x<=25
в) (6-14*0.4)(x/100)+0.4 >= 0.5
0.4(x/100)>=0.1
x>=25.
Таким образом, получили уже упрощенную систему неравенств для x: x<=25 и x>=25, единственным решением которой является x=25.
4,7(34 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ