Пусть ABCM - данная пирамида, О - центр правильного треугольника, тогда
OM=3, угол AHС=120 градусов
Н - точка такая, что AH перпендикулярно HB
(по формуле)
синус угол наклона бокового ребра к плоскости основания=
произведению ctg(180\n)*котангенс половины двугранного угла при основании
sin угол OAM=ctg(180\3)*ctg(угол BHA\2)
sin угол OAM=ctg 60*ctg 60=1\3
С прямоугольного треугольника OAM
sin угол OAM=OM\AM
AM=1\3*3=1
OA=корень(3^2-1^2)=2*корень(2)=R
Vk=1\3*pi*R^2*h
Vk=2\3*pi*8*3=16*pi
ответ:16*pi
5х+40-3х+6=30
2х+46=30
2х=30-46
2х=-16
х=-8
скобки
=х^2-11х-2х+22-8х+6х^2=
=7х^2-21х+22