Правильная треугольная пирамида - это тетраэдр. AB = AC = BC = AS = BS = CS = 2 OF = 1/4*OS Центр основания пирамиды О - это центр равностороннего тр-ка АВС. CM - медиана, она же биссектриса и высота тр-ка АВС. AM = AB/2 = 1, CM = √(AC^2 - AM^2) = √(2^2 - 1^2) = √(4 - 1) = √3 MO = 1/3*CM = √3/3; OA = OC = 2/3*CM = 2√3/3 OS = √(CS^2 - OC^2) = √(4 - 4*3/9) = √((36-12)/9) = √24/3 = 2√6/3 OF = 1/4*OS = 2√6/12 = √6/6 И наконец находим угол между плоскостью MBF = ABF и ABC. tg(OMF) = OF/MO = (√6/6) / (√3/3) = √6/6 * 3/√3 = √6/(2√3) = √2/2 OMF = arctg (√2/2)
Решение Находим первую производную функции: y' = -( - x + 13)e^(- x + 13) - e^(- x + 13) или y' = (x -14)e^(- x + 13) Приравниваем ее к нулю: (x - 14) e^(- x + 13) = 0 e^(- x + 13) ≠ 0 x - 14 = 0 x = 14 Вычисляем значения функции f(14) = 1/e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13) или y'' = (- x+15)e^(- x + 13) Вычисляем: y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.
10*0.3+2.5=3+2.5=5.5
б)0.3ab
0.3×5×6=9
в)20-2x^2
20-2×3^2=20-2×9=20-18=2