1. Наклеим сначала этикетки на дискетки в произвольном порядке.
Предположим, что у нас образовались дубли нескольких различных цветов.
Возьмем по одной дискетке-дублю двух разных цветов и обменяем их этикетки.
После этого каждая из дискеток перестанет быть дублем, так что общее число дублей уменьшится на 2.
Далее будем повторять эту операцию до тех пор, пока дублей различных цветов не останется.
2. Докажем нужный факт индукцией по числу дискеток (при этом можно даже не обращать внимание на соответствие цветов дискеток и этикеток!).
База индукции (одна дискетка) очевидна. Переход: если все k + 1 дискеток одноцветны, то и доказывать нечего.
Если же есть дискетки разных цветов, то возьмем одну из них и наклеим на нее этикетку другого цвета, а для остальных k дискеток применим
Пошаговое объяснение:
Р(2,5² - 1,5²) = (1 * 4) = (4) - координата Р
Н((2,5+1,5)/2) = (2) - координата Н
РQ = HQ
|4 - Q| = |2 - Q|
1) Q < 2
4 - Q = 2 - Q
4 = 2 - нет решений
2) 2 < Q < 4
4 - Q = Q -2
2Q = 6
Q = 3
3) Q > 4
Q - 4 = Q - 2
4 = 2 - не верно
нет решений
значит, Q(3)
(0)___(1)___H(2)___Q(3)___P(4)>
7.
от противного
пусть все мальчики собрали разное количество орехов
тогда минимальное количество орехов, которое они могли собрать:
0 + 1 + 2 + ... + 14 = 14*15/2 = 7 * 15 = 105 > 100
противоречие, значит, не могли все собрать разное количество орехов, а значит, найдутся минимум два мальчика, набравшие одинаковое количество орехов
Доказано.
2) 27*8=216 (пуг.) - за 8 часов
ответ: 216 пуговиц пришьет швея за 8 часовой рабочий день.