1) у нас этот факт доказывался в школьном учебнике при выводе "первого замечательного предела". рассуждение было . брался угол величиной xx радиан в первой координатной четверти. площадь сектора единичной окружности при этом равна 12x12x. этот сектор содержится в прямоугольном треугольнике, один из катетов которого равен 1 (горизонтальный), а второй равен tgxtgx (вертикальный). его площадб равна 12tgx12tgx. отсюда из сравнения площадей следует неравенство x< tgxx< tgx, то есть xcosx< sinxxcosx< sinx.
2) надо рассмотреть производную функции: y′=5ax2−60x+5(a+9)y′=5ax2−60x+5(a+9) и потребовать, чтобы она нигде не была отрицательной. ясно, что a> 0a> 0, и тогда у квадратного трёхчлена ax2−12x+a+9ax2−12x+a+9должен быть дискриминант d≤0d≤0. это значит, что a2+9a−36≥0a2+9a−36≥0, откуда a∈(−∞; −12]∪[3; +∞)a∈(−∞; −12]∪[3; +∞). с учётом положительности aa имеем a∈[3; +∞)a∈[3; +∞).
В решении.
Пошаговое объяснение:
1. Установить соответствие:
1) 2х < -6 x < -6/2 x < -3 D;
2) 1 > x - 1 -x > - 1 - 1 -x > -2 x < 2 E;
3) -3x < -6 x > -6/-3 x > 2 A;
4) -1 < x x > -1 C;
5) -5x < 5 5x > -5 x > -5/5 x > -1 C;
6) 8 < 4x -4x < -8 x > -8/-4 x > 2 A;
7) x + 2 < 5 x < 5 - 2 x < 3 B;
8) 15 < -5x 5x < -15 x < -15/5 x < -3 D.
2. Решить неравенство:
(х - 1)/2 - (2х + 3)/8 - х > 2
Умножить все части неравенства на 8, чтобы избавиться от дробного выражения:
4(х - 1) - (2х + 3) - 8*х > 8*2
Раскрыть скобки:
4х - 4 - 2х - 3 - 8х > 16
-6x > 23
6x < -23 (знак неравенства меняется при делении на минус)
x < -23/6
Решение неравенства х∈(-∞; -23/6).
Неравенство строгое, скобки круглые.
На координатной прямой отметить -23/6 (-3 и 5/6), штриховка от -23/6 влево до - бесконечности.
12×11=132
132+5=137
ответ:137
(Проверка:137÷12=11(остаток 5)