Для правильного решения уравнений нужно уметь пользоваться математическим языком. Словами математического языка являются числовые и буквенные выражения.
Математические выражения могут состоять из одного числа или из одной буквы:
42
z
Или из двух и более чисел и букв, соединённых знаками арифметических действий:
a − 4
2x
x + y
В записи выражений никогда не применяются знаки равенств и неравенств.
= ; ≠ ; > ; < ; ≥ ; ≤
Знаки выше служат для записи равенств и неравенств.
Математические выражения делятся на числовые и буквенные.
Выражение называют числовым, если оно не содержит букв. Примеры числовых выражений:
8
3 · 4
5 : 1
41 + 2 · 3
Если выполнить все действия, содержащиеся в числовом выражении, то получится числовое значение выражения.
Пример:
Запись «30 · 5 + 40» — это числовое выражение.
Выполнив все действия, получим число «190» — числовое значение выражения.
Если какое-либо число в числовом выражении заменить буквой, то полученное выражение называют буквенным.
7t + 5
ab − c
25:5 − y
Читаются буквенные выражения следующим образом.
«4a» − четыре «a»
Более сложные выражения начинают читать по последнему выполняемому действию.
Пошаговое объяснение:
6(ост1) или 6,1(6)
Пошаговое объяснение:
если укладывать в ряд по 10 плиток, то для квадратной площадки плиток не хватает"
Значит плиток меньше, чем 100 штук.1(
При укладывании по 8 плиток в неполном ряду может быть только 7 плиток, т.к. при укладывании по 9 плиток получается неполный ряд, в котором на 6 плиток меньше. То есть 1 плитка.
Нужно найти такое число меньше 100, которое при делении на 8 даёт остаток 7, а при делении на 9 - остаток 1. Это число 55.
55:8 = 6 (ост. 7)
55:9 = 6 (ост. 1)
или 6,1(6)
ответ 1,5кг масса сыра