М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ananasik79
ananasik79
13.03.2022 05:45 •  Математика

Запишите дроби в порядке убывания: 4/9,10/12,4/8,14/24.

👇
Ответ:
falala1
falala1
13.03.2022
Чтобы сравнивать дроби, их нужно привести к общему знаменателю. У дробей с одинаковым знаменателем больше та дробь, числитель которой больше.
НОЗ (9, 12, 8 и 24) = 72 - общий знаменатель
72 : 9 = 8 - доп.множ. к 4/9 = (4*8)/(9*8) = 32/72
72 : 12 = 6 - доп.множ. к 10/12 = (10*6)/(12*6) = 60/72
72 : 8 = 9 - доп.множ. к 4/8 = (4*9)/(8*9) = 36/72
72 : 24 = 3 - доп.множ. к 14/24 = (14*3)/(24*3) = 42/72
В порядке убывания: 10/12 > 14/24 > 4/8 > 4/9.
4,7(79 оценок)
Открыть все ответы
Ответ:
germannesta
germannesta
13.03.2022

1) Дать определение: число a больше числа b

a > b, ели a − b > 0

Число a больше числа b,  если разность этих чисел положительна.

2) Сравнить:

а)

8/11 и 9/13

Вычтем из первого числа второе:

\frac{8}{11} - \frac{9}{13}   и 0

\frac{8}{11} - \frac{9}{13}=\frac{104-99}{143}=\frac{5}{143}

\frac{5}{143} и 0

\frac{5}{143} > 0

Значит, \frac{8}{11} \frac{9}{13}

б)

a²+16 и 8a

Вычтем из первого выражения второе:

a²−8a+16 и 0

(a−4)² и 0

по определению, вырежение в квадрате всегда дает число неотрицательное, то есть (a−4)²≥0

(a−4)² = 0, если a = 4

(a−4)² > 0, если a ≠ 4

Значит, a² + 16 > 8a, если a ≠ 4; и a²+16 = 8a, если a = 4.

3) Доказать неравенство:

(a−3)(a+11) < (a+3)(a+5)

a²+11a−3a−33 < a²+5a+3a+15

Вычтем из первого выражения второе:

a²+11a−3a−33−a²−5a−3a−15 и 0

−48 и 0

Значит, (a−3)(a+11) < (a+3)(a+5), что и требовалось доказать.

4) Сравнить числа а и b, если верно неравенство: 3a−3b ≥ 1

3(a-b)\geq 1\\a-b\geq \frac{1}{3} 0\\ ab

5) Оценить величину: 5а−2, если 1,1 < а ≤ 1,2

Умножим все части неравенства на 5:

5·1,1 < 5a ≤ 5·1,2

5,5 < 5а ≤ 6

Вычтем из всех частей неравенства 2:

5,5−2 < 5а−2 ≤ 6−2

Получаем:

3,5 < 5а−2 ≤ 4

4,8(85 оценок)
Ответ:
KARKARACH
KARKARACH
13.03.2022

1) 3cos2a−4sin2a=3cos2a−4(1−cos2a)=7cos2a−4T.k. −1≤cos a≤1, mo 0≤cos2a≤1 =>−4≤7cos2a−4≤3

-4 - наименьшее значение

3 - наибольшее значение.

\begin{lgathered}2)\ 2sin^2a +3tg\ a*ctg\ a =2sin^2a +3\\ T.k.\ -1 \leq sin\ a \leq 1,\ mo\ 0 \leq sin^2a \leq 1\ => \\ 3 \leq 2sin^2a+3 \leq 5\end{lgathered}2) 2sin2a+3tg a∗ctg a=2sin2a+3T.k. −1≤sin a≤1, mo 0≤sin2a≤1 =>3≤2sin2a+3≤5

3 - наименьшее значение

5 - наибольшее значение.

\begin{lgathered}3)\ 3cos^2a-4sin\ a=3(1-sin^2a)-4sin\ a=-3sin^2a-4sin\ a+3 \\ \Pi ycmb\ sin\ a=t,\ -1 \leq t \leq 1\ =>\\ f(t)=-3t^2-4t+3,\ t \in [-1;1]\\ f'(t)=-6t-4\\ f'(t)=0\ => -6t-4=0\ npu\ t=-\frac{2}{3}\\ f(-\frac{2}{3})=-3(-\frac{2}{3})^2-4(-\frac{2}{3})+3=4\frac{1}{3}\end{lgathered}3) 3cos2a−4sin a=3(1−sin2a)−4sin a=−3sin2a−4sin a+3Πycmb sin a=t, −1≤t≤1 =>f(t)=−3t2−4t+3, t∈[−1;1]f′(t)=−6t−4f′(t)=0 =>−6t−4=0 npu t=−32f(−32)=−3(−32)2−4(−32)+3=431

\begin{lgathered}f(-1)=-3(-1)^2-4(-1)+3=2\\ f(1)=-3*1^2-4*1+3=-4\end{lgathered}f(−1)=−3(−1)2−4(−1)+3=2f(1)=−3∗12−4∗1+3=−4

-4 - наименьшее значение

4\frac{1}{3}431 - наибольшее значение.

4,4(71 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ