15 - 5d = 21 - 8d 8d - 5d = 21 - 15 3d = 6 d = 6 : d d = 2 - разность прогрессии, и, соответственно, количество подтягиваний, на которое Фродо ежедневно увеличивал нагрузку.
Подставим d = 2 в любое уравнение, например, 15 = а1 + d(6-1) 15 = а1 + 2(6-1) 15 = а1 + 2•5 а1 = 15 - 10 а1 = 5 раз Фродо подтянутся 1-го января.
Поскольку весы именно чашечные, то задача нахождения фальшивой монеты из N сводится к бинарному поиску - мы каждый раз делим исходную кучку пополам (или на три части, если пополам не делится), определяем ту, которая легче, затем поступаем с ней аналогично. И т.д. пока сравнение не сведется к 2-м монетам - более легкая из них и есть искомая. При этом для N монет нам понадобится log2(N) взвешиваний. Если N не степень двойки, то округление идет до ближайшей СЛЕДУЮЩЕЙ. Т.о. в нашем примере log2(N) = 4. Откуда N = 2^4 = 16. 16 монет.