1) F(x) = 4x - x^3/3 + C
F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10
C = 13
F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования
y = x^2
y = 6 - x
x^2 = 6 - x
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) =
= 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) =
= 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования
2sin x = sin x
sin x = 0
x1 = 0; x2 = pi
Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) =
= |cos pi - cos 0| = |-1 - 1| = |-2| = 2
Подробнее - на -
1. D = R\{1}
2. E = [-1/8, infty)
3. Непериодическая.
y(-x)!=y(x); y(-x)!=-y(x) - не является четной или нечетной.
4. Непрерывна на всей числовой прямой за исключением точки x=1
5. x=1 - разрыв 2 рода
6. y>0 при x in (-1,1); (1,infty)
y<0 при x in (-infty, -1)
7. y(0) = 1
y=0 <-> x=-1
8.
y'=((x-1)^2-2(x^2-1))/(x-1)^4=(-x^2-2x+3)/(x-1)^4=-(x+3)/(x-1)^3
y'>=0 -3<=x<1
Ф-ция возрастает на промежутке [-3,1); убывает на промежутках [-infty,-3] и (1,infty).
9. x=-3 - точка минимума.
10. y'' = 2(x+5)/(x-1)^4
y''>=0 x in [-5,1); (1, infty) - ф-ция выпуклая
y''<=0 x in (-infty,-5] - ф-ция вогнутая
x=-5 - точка перегиба
11. вертикальная x=1. невертикальная y=0
12. Воспользуйтесь любой программой.
38а54кв.м*7=380кв.м54кв.м*7=434кв.м*7=3038кв.м
5га16а:6=500а16а:6=516а:6=86а
80кв.м72кв.дм:8=8000кв.дм72кв.дм:8=8072кв.дм :8=1009кв.дм