ответ: Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Итак, нам нужно сравнить:
Числа, кратные 8, но не кратные 9.
Числа, кратные 9, но не кратные 8.
Давайте к каждой из этих групп чисел прибавим числа, которые кратны 8 и еще числа, кратные 9. Получим:
1. (Кратные 8 + не кратные 9) + (кратные 8 + кратные 9) = кратные 8 + кратные 8 = 2 * (кратные 8).
2. (Кратные 9 + не кратные 8) + (кратные 8 + кратные 9) = кратные 9 + кратные 9 = 2 * (кратные 9).
Теперь нам нужно сравнить удвоенное количество чисел, кратных 8, и удвоенное количество, чисел кратных 9. Можно поделить каждую из частей на 2.
Итак, каких чисел больше:
кратных 8;
или кратных 9?
Понятно, что чисел, кратных 8, все-таки больше, чем чисел, кратных 9, так как само число 8 меньше 9 и мы берем довольно большой промежуток чисел.
Возвратившись к исходной задаче, получаем:
Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
1. 0.99 приблизетельно равно еденице, а 10 в первой степени равно 10
ответ: 10
2. площадь квадрата равна х^2, значит, если ее величина отличается от первоначально на 0,01, нам нужно найти корень квадратный из 0,01, а он равен 0,1
ответ:Чтобы площадь полученной фигуры отличалась от проектной не более чем на плюс минус 0.01 см в квадрате нужно изменить сторону квадратной пластины в пределах плюс минус 0.1 см