М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vasilevaka12
vasilevaka12
30.05.2022 20:50 •  Математика

Округлите a) до десятых 4,653 б)до единиц 6,78 в)до десятков 3786

👇
Ответ:
Simpson011
Simpson011
30.05.2022
4,7,  7,  3790
4,4(24 оценок)
Открыть все ответы
Ответ:
Школьник071
Школьник071
30.05.2022
1)Находим D(f): x \neq 0
2)Теперь найдём производную функции:
f'(x) = -2x - \frac{25600}{ x^{2} }
Учтём, что производная функции определена там же, где и сама функция.
3)Приравняем производную к 0 и найдём соответствующие x:
-2x - \frac{25600}{ x^{2} } = 0
Дальше просто решаем это уравнение:
\frac{-2 x^{3} - 25600}{ x^{2} } =0
Числитель должен быть равным 0, знаменатель - отличным от него.
Поэтому
-2x^{3} - 25600 =0
x = \sqrt[3]{-12800}

4)Остался последний шаг. Мы нашли так называемую стационарную точку функции, то есть точку, в которой производная обращается в 0. Она и является потенциально точкой минимума в данном случае. Осталось это проверить.
Как это проверяется? Достаточно убедиться, что при переходе через неё производная функции меняет знак с - на +.
Вот такая схемка чередования знаков(определить их можно методом интервалов для дроби). Видим, что в данной точке производная меняет знак с + на -, значит, это не точка минимума - это точка максимума. Точки минимума у данной функции нет.

Найдите точку минимума функции : -x^2+25600/x через какую формулу ? ?
4,8(70 оценок)
Ответ:
RinOkumura99
RinOkumura99
30.05.2022

Пошаговое объяснение:

Мы имеем прямоугольный треугольник АВС, с прямым углом С, где АС, ВС - катеты, АВ - гипотенуза. Также мы имеем описанную окружность, радиус которой мы можем найти, как половину гипотенузы, для начала найдем гипотенузу по теореме Пифагора:

AB^2 = AC^2 + BC^2;

AB^2 = 6^2 + 8^2;

AB^2 = 36 + 64;

AB^2 = 100;

AB = 10 см.

Так как мы нашли длину гипотенузы, мы можем сразу найти радиус описанной окружности, как:

R = AB / 2;

R = 10 / 2;

R = 5 см.

ответ: радиус описанной окружности равен 5 см.

4,7(11 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ