Допустим, вы освоили метод интервалов (если не освоили — рекомендую вернуться и прочитать) и научились решать неравенства вида P(x)>0P(x)>0, где P(x)P(x) — какой-нибудь многочлен или произведение многочленов.
Полагаю, что для вас не составит труда решить, например, вот такую дичь (кстати, попробуйте для разминки):
(2x2+3x+4)(4x+25)>0;x(2x2−3x−20)(x−1)≥0;(8x−x4)(x−5)6≤0.(2x2+3x+4)(4x+25)>0;x(2x2−3x−20)(x−1)≥0;(8x−x4)(x−5)6≤0.
Теперь немного усложним задачу и рассмотрим не многочлены, а так называемые рациональные дроби вида:
P(x)Q(x)>0P(x)Q(x)>0
где P(x)P(x) и Q(x)Q(x) — всё те же многочлены вида anxn+an−1xn−1+...+a0anxn+an−1xn−1+...+a0, либо произведение таких многочленов.
Это и будет рациональное неравенство. Принципиальным моментом является наличие переменной xx в знаменателе. Например, вот это — рациональные неравенства:
x−3x+7<0;(7x+1)(11x+2)13x−4≥
7. а)15
б) Алия
с) Алия и Диана
8. Дано: ∠AOC = 180° Найти: ∠ AOB, ∠BOC — ?
1) Пусть ∠BOC = x°. Тогда ∠AOB = x+40°. По теореме о сумме углов треугольника получаем, что x+x+40 = 180°.
уравнение.
x+x+40 = 180
2x + 40 = 180
2x = 180-40
2x = 140
x = 140:2
x = 70.
∠BOC = 70° ∠AOB = 70+40 = 110°
ответ: 70°, 110°.
9.а)45
P.S (не могу почему то загрузить файл )
- 7,8
31,356
74,256
-18,2
56,056