6 см
Пошаговое объяснение:
По условию, трапеция вписана в окружность, значит она равнобедренная, т.е. CD=AB (это свойство трапеции).
Центр О окружности лежит на AD - большем основании трапеции, значит, сторона AD - диаметр трапеции ABCD, а отрезок AO является радиусом трапеции.
Найдём радиус окружности:
r = D/2 = AD/2 =12/2 = 6 см
AO= r = 6 см
Отрезок ОВ = 6 см, т.к. он также является радиусом окружности.
ΔАОВ - равнобедренный, т.к. АО=ОВ=r=6 см.
В равнобедренном треугольнике углы при основании равны, поэтому ∠ОАВ=∠ОВА.
По условию, ∠А=60°. ∠А=∠ОАВ, следовательно, ∠ОВА=60°.
Найдём ∠АОВ:
∠АОВ=180°-(∠ОАВ+∠ОВА)=180°-(60°+60°)=180°-120°=60°
Получается, что ΔАОВ - равносторонний.
Это означает, что АВ=ОА=ОВ=6 см
Т.к. трапеция равнобедренная, то CD=AB=6см
По действиям:
1)93*8=744
2)744+56=800
3)800:100=8
1)(45+55):5*67=1340
По действиям:
1)45+55=100
2)100:5=20
3)67*20=1340