Пусть nn -- чётное натуральное число, и мы играем для таблицы n×nn×n (в данном случае n=100n=100). Дано также чётное число N≥n2N≥n2 (здесь это N=105N=105). Покажем, как второй может выиграть, добившись выполнения неравенства A≤BA≤B. Для этого ему достаточно сделать так, чтобы суммы чисел во всех строках оказались равными. При этом значение сумм будет равно AA, и тогда сумма всех чисел таблицы окажется равна nAnA. Ясно, что при этом найдётся столбец, сумма чисел в котором будет не меньше nA/n=AnA/n=A, то есть B≥AB≥A.
Разобьём все числа каждой строки на пары, что возможно ввиду чётности nn (например, покроем их горизонтальными плитками 1×21×2, где клетки одной и той же плитки образуют пару). Далее, каждому натуральному числу k≤Nk≤N сопоставим парное, равное N+1−kN+1−k. Парные числа в сумме дают нечётное число N+1N+1, поэтому не могут быть равны.
Стратегия второго состоит в том, чтобы в ответ на ход первого вписывать парное число в парную клетку. Тогда в каждой паре (плитке) сумма чисел равна N+1N+1, и в каждой строке сумма чисел будет равна A=(N+1)n2A=(N+1)n2, что и требовалось.
(25+35):10=60:10=6
(47+23):7=70:10
30:(27+3)=30:30=1
5:(54-53)=5:1=5
70:7*5=10*5=50
60:10*3=6*3=18
20:20*0=1*0=0
50:10*6=5*6=30
18:2*10=9*10=90
32:4*3=8*3=24
12:3*6=4*6=24
45:9*7=5*7=35
Пошаговое объяснение: