1) sina 2) sina 3) ctga 4) sina При Π/2, 3Π/2 функция меняется на кофункцию. И знак определяешь по окружности, sin в 1,2 четвертях с "+", cos в 1,4, tg и ctg в 1 и 3
Итак, места, где производная равна 0 - это точки перегибов (функция с увеличения идёт на спад или наоборот) .
Вот их и найдём f(x)'=3x^2-2x-1=0; 3x^2-2x-1=0; d=4+12=16 x1=(2-4)/6=-2/6=-1/3 x2=(2+4)/6=1
а теперь посчитаем значения функции для этих двух точек, а также для двух граничных точек (ведь если функция уходит в бесконечность как при x^2 например, то крайние точки могут быть выше или ниже перегибов) .
2) sina
3) ctga
4) sina
При Π/2, 3Π/2 функция меняется на кофункцию.
И знак определяешь по окружности, sin в 1,2 четвертях с "+", cos в 1,4, tg и ctg в 1 и 3